

AFRL-IF-RS-TR-2003-244

Final Technical Report
October 2003

FLEXIBLE DECISION SUPPORT IN DEVICE-
SATURATED ENVIRONMENTS

Cornell University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. H575

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-244 has been reviewed and is approved for publication.

APPROVED: /s/
BRADLEY J. HARNISH
Project Engineer

 FOR THE DIRECTOR: /s/
WARREN H. DEBANY, JR., Technical Advisor
Information Grid Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
OCTOBER 2003

3. REPORT TYPE AND DATES COVERED
Final Apr 99 – Mar 03

4. TITLE AND SUBTITLE
FLEXIBLE DECISION SUPPORT IN DEVICE-SATURATED
ENVIRONMENTS

6. AUTHOR(S)
Johannes Gehrke

5. FUNDING NUMBERS
C - F30602-99-2-0528
PE - 62301E
PR - H575
TA - 16
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Cornell University
4105B Upson Hall
Ithaca New York 14853

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFGA
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-244

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Bradley J. Harnish/IFGA/(315) 330-1884/ Bradley.Harnish@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The widespread distribution of small-scale sensors, actuators, and embedded processors is transforming the physical
world into a computing platform. Sensor networks with nodes that combine physical sensing capabilities with networking
and computation capabilities have become ubiquitous. Existing sensor networks assume that the sensors are
preprogrammed and send data to a central frontend where the data is processed. This approach has two major
drawbacks. First, the user cannot change the behavior of the system on the fly. Second, communication in today's
networks is orders of magnitude more expensive than local computation, thus in-network processing can vastly reduce
resource usage. We investigated a database approach to unite the requirements of scalability and flexibility in
monitoring the physical world. We built a new distributed data management infrastructure that scales with the growth of
sensor interconnectivity and computational power on the sensors over the next decades. Our system resides directly on
the sensor nodes and creates the abstraction of a single processing node without centralizing data or computation. Our
system provides scalable, fault-tolerant, flexible data access and intelligent data reduction, and its design involved a
confluence of novel research in database query processing, data mining, networking, and distributed systems.

15. NUMBER OF PAGES
83

14. SUBJECT TERMS
Sensor Network, Data Management, Query Processing, Monitoring The Physical World

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

Table of Contents

1 Introduction..1
2 Reporting Period: This is the final annual report..1
3 System Overview...1
3.1 QueryProxy...3
3.2 FrontEnd ...3
3.3 GUI ...3
4 System Internals...5
4.1 Directed Diffusion Interests..5
4.2 Creating Clusters...5
4.3 Query Types..5
4.4 Query Processing ..6
4.5 Steps to Pose a Query ...6
5 Source Level Documentation...7
5.1 Code Layout and Directory Structure ...7
5.2 QueryProxy Code Summary ...7
5.3 QueryProxy Code Execution ..8
5.3.1 QueryProxy2: The Main Thread...8
5.3.2 NodeProcessingLayer ..8
5.3.3 QueryPlan ..8
5.3.4 ActiveQuery...9
5.3.5 LeaderProcessingLayer..10
5.4 FrontEnd Code Summary ...10
5.5 FrondEnd Code Execution..11
5.6 GUI Code Summary ...11
5.7 GUI Code Execution...11
5.8 SimTracker Code Summary..12
5.9 SimTracker Code Execution ...13
6 Parsing XML Messages and Requests...13
6.1 Reading XML Messages with the Request class ..13
6.2 Creating New XML Messages..13
6.3 Creating New XML Messages..14
7 GUI Walkthrough ..15
7.1 Config Panel..15
7.2 Map Panel ...16
7.3 Query Panel...18
7.4 Results Panel...20
7.5 Detection Queries..21
7.6 Tracking Queries...24
8 SimTracker Walkthrough...26
8.1 Map Panel ...26
8.2 Drawing Simulated Paths..27
8.3 Adding Simulated Targets ..29
8.4 Running a Simulation ...31
9 Significant Accomplishments Over the Lifetime of the Contract33

 ii

9.1 Software ..33
9.2 Demonstrations ...33
9.3 Publications...34
10 Final Status on Each of the Tasks ..35
11 Percent of Technical Completion...36
12 Appendix..36
Appendix A: Query the Physical World..37
Appendix B: Towards Sensor Data...43
Appendix C: GADT: A Probability Space ADT for Representing & Querting................55
Appendix D: Query Processing for Sensor Networks...66
Appendix E: COUGAR: The Network is the Database. ..78

List of Figures

Figure 1: System Overview ..2
Figure 2: GUI Map Selection..4
Figure 3: Query Results ..4
Figure 4: Detection Results...4
Figure 5: Tracking Results..4
Figure 6: Config Panel Setup..15
Figure 7: Map Panel – Show Clusters...16
Figure 8: Map Panel – Show Overlapping Clusters..17
Figure 9: Query Panel ...18
Figure 10: Query Panel – Select Area...19
Figure 11: Results Panel ...20
Figure 12: Detection Queries ..21
Figure 13: Detection Queries – Filter by Type ...22
Figure 14: Detection Queries – Show Results ..23
Figure 15: Tracking Queries ...24
Figure 16: Tracking Queries – Show Results ...25
Figure 17: SimTracker Map Panel..26
Figure 18: Drawing Paths ...27
Figure 19: Saving Paths ..28
Figure 20: Adding Targets ..29
Figure 21: Editing Targets ..30
Figure 22: Simulated Paths ...31
Figure 23: Running a Simulation..32

 1

1 Introduction

The objective of this effort was to develop a scalable declarative programming
environment that facilitates flexible decision-making in sensor networks.

We believe that procedural programming paradigms are inappropriate for highly scalable
and flexible applications built on sensor networks. Realistic applications should instead
be developed declaratively based on a high-level logical abstraction of the system. This
approach separates the behavior of the application (specified by the queries) from its
implementation, leading to the promise of efficiency, flexibility, and scalability.

In the Cougar project at Cornell University, we have developed distributed database
techniques to process queries over sensor networks. Our approach allows users to
formulate queries that involve functionalities provided by sensors out in the network. Our
system then optimizes these queries to (a) reduce response latency and to (b) take
maximal advantage of the resources available in the sensor network while at the same
time balancing the utilization of critical resources.

The Cougar system resides directly on the sensor nodes and creates the abstraction of a
single processing node without centralizing data or computation. Cougar provides
scalable, fault-tolerant, flexible data access and intelligent data reduction. Its design
involves a confluence of novel research in database query processing, data mining,
networking, and distributed systems.

2 Reporting Period: This is the final annual report.

3 System Overview

Cougar has a three-tier architecture:

• QueryProxy - a small database component that runs on sensor nodes to interpret

and execute queries.
• Frontend - a more powerful QueryProxy that serves as a gateway for connections

to the world outside of the sensor network.
• GUI - a graphical user interface through which users can pose ad-hoc and long-

running queries on the sensor network.

Our system forms clusters out of the sensors to allow intelligent in-network aggregation
to conserve energy by reducing the amount of communication between sensor nodes.
The query processing component handles distributing queries to the sensor nodes and
retrieving and processing results before sending the data to the user.

ryanp

 2

The QueryProxy runs on each sensor node in the network, while the FrontEnd runs on
selected nodes and acts as a gateway between the GUI and the QueryProxies. The
QueryProxy and FrontEnd are built using C++, and the GUI using Java.

The QueryProxy and FrontEnd run under Linux on either x86 or Sensoria WINS NG
node hardware. The GUI runs on any platform that supports Java and Swing.
Communications within the sensor network are transmitted using ISI’s Directed
Diffusion and are formatted as XML. The GUI and FrontEnd communicate over TCP/IP
sockets.

Figure 1: System Overview

 3

3.1 QueryProxy

The QueryProxy consists of three parts: the device manager, the node layer, and the
leader layer. The sensor nodes are capable of acting as leaders or normal query
processing/signal processing nodes. When the network is set up, clusters are formed and
leaders are elected from the nodes in the clusters. The QueryProxy system has a
hierarchical structure, with the FrontEnd communicating with nodes that act as cluster
leaders, and with cluster leaders communicating with the FrontEnd and with the other
sensor nodes in their clusters.

The device manager takes readings from the sensors. On the Sensoria nodes this involves
interacting with the BAE Systems signal processing module. BAE’s signal processing
can generate either raw readings directly from the sensors or high level events (e.g.
detections). The device manager is fully integrated for processing all of these types of
data.

The node layer manages the execution of queries on the sensor node and the interaction
with the device manager. This code is active on all the nodes. When a query is being
processed, the node layer requests the required tuples from the device manager. Then,
the query is processed using those tuples, and the results are sent to the cluster leader.

The cluster leader is a specially designated node in the cluster that is elected when the
system forms clusters. In addition to its node processing layer it has an active leader
processing layer which receives tuples from the other members of the cluster. The leader
layer then processes the queries using the received tuples and sends the replies to the
FrontEnd that initiated the query. When appropriate, tuples are aggregated before being
sent out.

3.2 FrontEnd

The FrontEnd issues queries it has received from the GUI to the QueryProxy software
running on the sensors. It keeps track of the queries currently running for the GUIs
running on the system and receives messages from nodes that are cluster leaders. The
FrontEnd delivers each tuple to the interested queries, does some processing of the
tuples, and sends a response to the GUI that initiated the query. It can also output tuples
to a remote MySQL or Postgres database.

3.3 GUI

The GUI allows the user to pose queries using SQL and to display query results in tabular
format. A map component allows the user to visualize the topology of sensors in the
network. The user can collect nodes into clusters which automatically elect a leader to
communicate with the FrontEnd. The map is also used to specify a region that the query

 4

should run over (Figure 2). Results from the query are displayed in a simple table for
easy viewing (Figure 3). Event queries such as detection and tracking queries are
displayed visually on the map in real time (see Figures 4-5).

Figure 2: GUI Map Selection Figure 3: Query Results

Figure 4: Detection Results Figure 5: Tracking Results

 5

4 System Internals

4.1 Directed Diffusion Interests

The QueryProxy component and the FrontEnds communicate with each other using ISI’s
directed diffusion. Four types of interests are set up:

1. Leader -> Front End channel. The front ends in the network all subscribe to a
common Interest. This allows all Leaders in the network to publish data for the
Front Ends to receive. The Leader nodes use this channel to send query results
back to the front end that initiated the query.

2. Front End -> All Nodes channel. All nodes in the network subscribe to a
common Interest. This allows all Front Ends in the network to publish data for all
nodes on the network to receive. The Front Ends use this channel to send queries
to leaders and to create clusters.

3. Cluster Nodes -> Cluster Leader channel. Each cluster leader subscribes to an
Interest that allows it to receive published query results from other nodes in its
cluster. Each cluster will have a different CN->CL channel.

4. Cluster Leader -> Cluster Nodes channel. Each node in a cluster subscribes to an
Interest common to that cluster. This allows the cluster leader to publish queries
for the cluster nodes to process. This channel is also used for leader selection.

4.2 Creating Clusters

The user at a FrontEnd creates a cluster by specifying the number of clusters to create in
the GUI. The GUI will then proceed and choose a subset of the nodes in the network to
act as centeroids. The centeroids act as cluster leaders. Then, the centeroids are
broadcast to all nodes in the network. Nodes that are centeroids act as cluster leaders,
and other nodes join the cluster that has the closest centeroid.

Each node can belong to multiple clusters. The user can specify a box region and nodes
within that region are grouped into a single cluster. With this functionality, the user can
optimize the clustering for better performance according the query workload and
distribution of sensor nodes.

4.3 Query Types

Several different types of queries are supported by the Cougar system:

1. Network Status Queries – What is the current operational status of nodes in region
R?

 6

2. Periodic Sensor Queries - Return the light reading of each sensor in region R
every S seconds.

3. Aggregated Sensor Queries - Calculate the average temperature of the sensors in
region R every S seconds.

4. Detection Queries - Report the detection of any vehicle in region R.
5. Perimeter Queries - Alert whenever an intruder enters region R.
6. Trigger Queries – Trigger alarm when the average temperature goes above a

threshold T in region R.
7. Tracking Queries – Show tracks for vehicles heading North in region R.

4.4 Query Processing

When a query is posed at the FrontEnd, the FrontEnd translates the query into a XML
message that the leader nodes understand. This message is sent to all leaders within the
network. The leader node is responsible for checking to see if the query involves any
nodes within its cluster region. If it does, then the leader must generate a plan to execute
the query. After the plan is generated, the leader node sends out tasks for the nodes
within its cluster to execute. The leader node is then responsible for receiving replies
from the nodes within its cluster and generating an appropriate reply for the FrontEnd.
The FrontEnd may need to combine results received from various leader nodes before
presenting it to the user who posed the query, as each leader node is only responsible for
its own cluster region, and a query may involve multiple clusters.

4.5 Steps to Pose a Query

1. FrontEnd receives a query in SQL form from the user. In addition, the user must
also specify a region in which the query applies, as well as a duration and
frequency.

2. FrontEnd translates the SQL query and duration and frequency into a XML Query
message and sends it to the cluster leaders.

3. All nodes that belong to clusters that have regions that intersect the region being
queried will process the message.

4. Leader nodes will generate a plan for the execution of the query. Then, the leader
nodes will execute the query by publishing XML Query messages to its cluster
nodes.

5. The cluster nodes will place the query in their query caches. This is necessary in
case the leader node fails. If this occurs, another node must take its place as the
leader and will need to know what queries are currently being executed.

6. Periodically, as specified by the Frequency supplied by the user, the cluster nodes
will send back results to the leader.

7. The Cluster leader will receive XML Responses from its cluster nodes
periodically. It must process these responses appropriately and, at the user
supplied frequency, must return a result to the FrontEnd.

 7

8. The FrontEnd receives replies from cluster leaders and processes their results
accordingly and updates query results at the supplied frequency.

9. Repeat 5 through 7 until the query is complete.

A node may also receive a delete query message which is identical to the create query
message except for a tag. The node will then remove the query from its internal
structures so that it no longer schedules the query to be executed and no longer sends
results back.

Certain queries such as aggregation queries are modified by the leader nodes before being
send to the other nodes in the cluster. The leader node in this case would remove the
aggregation from the query before sending it out to the nodes. When it receives all the
results, it performs the aggregation and returns the value to the FrontEnd.

5 Source Level Documentation

5.1 Code Layout and Directory Structure

• queryproxy: Contains makefiles for the components of the system

o bae: Code for running BAE’s signal processing module
o FrontEnd2: Code for the FrontEnd. Pulls in some code from the

QueryProxy2 directory.
o GUI: Java GUI code for querying the sensor network

� Images: Image files used by the GUI.
o QueryProxy2: Code for the QueryProxy.

� Common: Code common to both the Leader and Node layers.
� Debug: Debugging related code.
� Leader: Code pertaining to the Leader layer of the QueryProxy.
� Mote: Code for interacting with the Berkeley Motes.
� Node: Code pertaining to the Node layer of the QueryProxy.
� QueryProcessor: Query processing code used by the QueryProxy

and the FrontEnd.
� Request: Classes representing messages and XML parsing code.
� Sensors: Code for getting sensor readings from sensors.

o scripts: scripts for running simulations
o simTracker: Java code for simulating tracked objects in the sensor network

5.2 QueryProxy Code Summary

• The QueryProxy code consists of several main parts:
• The files under "Leader" pertain to the leader node layer.
• The files under the "Node" directory pertain to the node level layer.

 8

• The files under "Request" pertain to the XML messages that are sent between
queryproxy node and leader layers and the frontend. Some of these classes are
also used by the FrontEnd code.

• The files under "Sensors" are for sampling the sensors on the Sensoria nodes.
• The files under "Debug" define debugging macros such as: ASSERT(x),

DEBUG(x). These macros are also used by the Frontend code.
• The files under "QueryProcessor" pertain to the execution of queries. It does

things like starting and stopping queries, duplicate elimination, and tuple
aggregation and processing. This code runs in the node layer, the leader layer,
and the frontend.

• The code under “Common” includes utility functions, directed diffusion
networking layers, and some common data structures. This code also runs in the
FrontEnd.

5.3 QueryProxy Code Execution

5.3.1 QueryProxy2: The Main Thread

Files: QueryProxy2.{cpp,h}

QueryProxy2, the executable for the QueryProxy program, takes four arguments - a
nodeID, and x, y, z coordinates. When the QueryProxy starts up, it creates a thread for
the leader layer and a thread for the node layer. It creates a data structure to hold the data
passed in at startup, and then it waits for the two threads to finish and the program quits.

5.3.2 NodeProcessingLayer

Files: QueryProxy2/Node/NodeProcessingLayer.{cpp,h}

The NodeProcessingLayer does all the work for the NodeProxy. This layer creates and
starts a thread that runs a QueryPlan. The main loop of the NodeProcessingLayer waits
for messages. Query related messages (starting/stopping) are forwarded to the
QueryPlan. The only other messages the NodeProcessingLayer needs to handle are
NodeID messages received from other cluster members during cluster creation, which are
internally (not over directed diffusion) sent to the LeaderProcessingLayer.

5.3.3 QueryPlan

Files: QueryProxy2/Node/QueryPlan.{cpp,h}

A QueryPlan is a class that is responsible for executing queries regularly, doing some
duplicate elimination, and sending out the results to the leader of the cluster. It maintains
and runs all of the currently active queries that run on the node.

 9

The main thread of this class waits on a queue listening for commands issued by its
creator (either a front end, node, or leader) and also timer messages to wake itself up to
process queries periodically.

Processing a new query or deleting a query involves adding or deleting from the
ActiveQuery list. The regular activation of queries is done by the method ‘void
ProcessQuery()’, which follows this simple outline of steps:

1. Go through the ActiveQuery table and see which queries need to be run.
2. Run each of those.
3. Schedule a timer so that it can wake up to execute the next query that is due.
4. Sleep until the next query must be run.

The QueryPlan uses a DeviceManager created in NodeProcessingLayer, to get the actual
tuples for the sensors involved in the queries it needs to process. The DeviceManager
interacts with the code in QueryProxy2/Sensors.

The actual queries are implemented by the ActiveQuery data structure described in the
next section.

5.3.4 ActiveQuery

Files: QueryProxy2/QueryProcessor/ActiveQuery.{cpp,h}

Internal Representation of Queries - ActiveQuery

The code in ActiveQuery handles the processing of queries. Each ActiveQuery object
represents all queries that are equivalent (only difference will be the ID assigned to each
query). Thus, each ActiveQuery object maintains a list of instances of that specific
query.

When a query is initially posed, the ActiveQuery first analyzes the query and, if running
on the FrontEnd or Leader, creates a possibly different query to ask the next lower level
of nodes (Leaders and Cluster Nodes, respectively). Then the newly created query is sent
to the proper destinations.

When new tuples arrive, they are delivered to the ActiveQuery object via a function call.
The tuples are held in a buffer that keeps only the most recent tuple received from each
cluster node.

When the query is to be processed (by the QueryPlan), ActiveQuery first retrieves all the
tuples it has received from the buffer. Then, depending on the query, aggregates may be
computed and the result is sent to the next higher level.

 10

5.3.5 LeaderProcessingLayer

Files: QueryProxy2/Leader/LeaderProcessingLayer.{cpp,h},
QueryProxy2/Leader/LeaderProcessingLayerHandlers.cpp,
QueryProxy2/Leader/LeaderProcessingLayerMessages.cpp

The implementation of functions defined in the .h file is split between these three .cpp
files.

The LeaderProcessingLayer is the main class in the Leader layer. The leader layer
handles clustering, aggregating tuples from the nodes in its cluster, and sending results
and receiving commands from the frontend. It may also need to modify some of the
queries received from the frontend before forwarding it to the nodes in its cluster.

The LeaderProcessingLayer creates a QueryPlan to handle the execution of queries. For
all query related messages (new query, stop query, new tuple), the message is forwarded
to the QueryPlan. The LeaderProcessingLayer handles cluster creation itself, however.

When a cluster is to be created, a leader must be elected. To do so, the
LeaderProcessingLayer sends its NodeID to all other nodes in the new cluster (via the
Leader->Node channel). The NodeIDs are received by the NodeProcessingLayer and are
internally forwarded to the LeaderProcessingLayer. Then, after a period of time, the
election is ended and the node with the greatest NodeID is declared the leader.

The LeaderProcessingLayer also handles testing operations such as retrieving node
information and starting/resetting nodes.

5.4 FrontEnd Code Summary

The code for the Frontend is mainly in one directory: FrontEnd2

• main.h - contains all the main include files
• DDFrontEnd.{cpp,h} - contains some FrontEnd specific networking code

using directed diffusion routing protocol.
• Database.{cpp,h} - handles writing tuples received by the FrontEnd from

the queryproxies into a remote MySQL database.
• FrontEnd.cpp - contains the main function and starts the main thread
• ConnectionHandler.{cpp,h} - processes both directed diffusion

connections with the cluster leaders and a TCP/IP connection with the GUI.
• ActiveConnection.{cpp,h}

The FrontEnd also uses the common, debug, util, QueryPlan, ActiveQuery, and Request
(the XML code) files that are in the QueryProxy2 tree.

 11

5.5 FrontEnd Code Execution

FrontEnd binds a defined socket and listens on this socket. When it receives a
connection, it spawns a thread to handle this connection. That connection is processed by
ConnectionHandler::Process(). For each connection another thread is created
to dispatch the request.

Query messages – Query related operations are forwarded to a QueryPlan, as in the
leader and node layers.

Tuple messages – Tuples coming from the Cluster Leaders are delivered to the
QueryPlan, which is responsible for sending them back to the client.

5.6 GUI Code Summary

The code for the GUI is in one directory: GUI

• ConnectionInfo.java,Connection.java – handles the connection
between the GUI and the FrontEnd/gateway node.

• DatabaseConnection.java – handles connections to an external
database (such as MySQL or Postgres).

• Debug.java – contains the code for printing out Debug messages
• FrontEndGUI.java – this is the main java class with most of the

component layout and interface drawing
• Global.java – global parameters and variables used by the other classes
• ImageFilter.java,ImagePreview.java – classes to aid in loading

an image from a file into the GUI
• JIMTable.java – Java IMproved Table for displaying tuple results
• Query.java – encapsulates a query to the sensor network
• ResultSetUtilities.java – contains helper functions for processing

results from an external database
• SelectionArea.java – contains all of the code drawing the map, e.g. the

nodes, the cluster, the detections, the tracks, etc.
• SQLQuery.java – encapsulates a query to an external database
• XML.java – contains all of the XML parsing code

5.7 GUI Code Execution

When the user clicks “Connect”, the GUI will form a TCP/IP connection to the FrontEnd
node. The connection is verified to be valid and then the user is allowed to start
querying.

 12

The first query must be a status query to retrieve the position and status of each node.
This is necessary since the nodes must be drawn on the map to allow the user to selected
areas on the map to query further.

Once the status query is finished, all other types of queries are available to be run. The
user can select pre-defined queries to run or can enter ad-hoc queries for the sensor
network. The user can also define a box area to run the query or select a list of nodes that
should respond.

XML query messages are sent from the GUI to the Frontend node. Tuple responses are
displayed in a table for perusal by the user as soon as they arrive. Certain types of
queries may also display information on the map, e.g. detections and tracks.

An interface for interacting with an external database is also provided. It is possible to
output the results of queries to a MySQL or Postgres database for archival and the GUI
can query those results.

5.8 SimTracker Code Summary

The code for the SimTracker is in one directory: SimTracker. Code is not shared
with the main querying GUI, since the functionality is very different.

• ConnectionInfo.java,Connection.java – handles the connection
between the SimTracker and the nodes in the network.

• Debug.java – contains the code for printing out Debug messages
• DetectionForwarder.java – handles sending the simulated detections

to the correct node.
• Global.java – global parameters and variables used by the other classes
• ImageFilter.java,ImagePreview.java – classes to aid in loading

an image from a file into the SimTracker
• Path.java – encapsulates the data for a path that a simulated target travels

through the sensor network.
• SelectionArea.java – contains all of the code drawing the map, e.g. the

nodes, the tracks, the targets, etc.
• SimTracker.java – this is the main java class with most of the component

layout and interface drawing
• Target.java – encapsulates the simulated target data
• XML.java – contains all of the XML parsing code

 13

5.9 SimTracker Code Execution

The SimulatedTracker allows users to draw simulated targets in the sensor network for
testing. It does this by forming a direct connection to each node in the network. The user
can then draw a path on the map and choose a target to follow that path. When the target
is within a certain distance of a node, the SimTracker sends a simulated detection directly
to the sensor node (see later section on GUI/SimTracker walkthroughs).

The idea is that another user will be querying the network for detections with the main
GUI. When the simulated detections arrive at the intended node, the detection is
processed and handled in the exact same manner as real detections. This enables users to
test the sensor network for problems when running detection or tracking queries.

6 Parsing XML Messages and Requests

6.1 Reading XML Messages with the Request class

The XML messages used by the QueryProxy are read using the Request class, located
in QueryProxy2/Request directory. To parse the XML message, the static function
Request::fromString is called with the XML message, the type of node that sent
the message, and the NodeID of the node which sent the message. This function will
return a pointer to a Request object if the XML parsing is successful, or NULL
otherwise.

The Request::GetType() function determines what type of message was received
and returns one of the TYPE_* constants defined in Request.h, e.g.
CREATE_CLUSTER, QUERY, TUPLE, QUERY_DELETE, etc. Most of the message
types have some data associated with them, which can be obtained via the
Request::GetData() function. This function returns a pointer to a RequestData
object. The data for each type of message is stored in a subclass of RequestData, e.g.
the CreateClusterData, QueryData, NodeIDData, and Tuple classes.

6.2 Extracting Sensor Data from a Tuple

A Tuple consists of a linked list of SensorFields. Each SensorField in a
Tuple must have a unique sensor and field. The value of a specific sensor.field is
obtained by calling Tuple.GetData() with the sensor and field names and an
optional aggregate.

 14

For example, for the query ‘SELECT MAX(light.value) FROM light’ one
would call ‘tuple->GetData("light", "value", "max")’ to obtain the
value of MAX(light.value).

To get a list of SensorFields in a Tuple, the linked list of SensorFields must
be traversed. To do so, GetFirst() is called to get the first SensorField. Each
SensorField is then examined with following functions:

• GetSensor() – returns the sensor name
• GetField() – returns the field name
• GetAggregate() – returns the aggregate function (if any)
• GetData() – returns a pointer to the data stored in the DataType class

GetNext() obtains the next SensorField in the list. Note that the
SensorFields in a Tuple may or may not be in any particular order. The actual data
is stored in the DataType object associated with each sensor and there are three
member functions named GetInt(), GetDouble(), and GetString() that return
the sensor value depending on the type of the data.

For more details, the SensorField class is located in the SensorField.{cpp,h}
files and the DataType classes are located in DataType.{cpp,h}.

6.3 Creating New XML Messages

To create a new XML message, one must write a subclass of RequestData to hold an
internal representation of that data, and add functions to read and write the XML
message. A short outline of this procedure follows.

1. First, add a new TYPE_ constant to the Request.h file.
2. Next, modify Request::ReadXMLType in RequestXMLRead.cpp to

recognize the new XML message. This function, when supplied with the new
XML message, should return the new TYPE_ constant.

3. Request::ReadXMLMessage in RequestXMLRead.cpp must be
modified to have a new case statement for the new TYPE_ constant. It should
call a function which will handle the parsing of the new XML message. This
function should return the new subclass of RequestData that represents the
message, or NULL if the message could not be parsed.

4. Finally, add a new case statement to Request::WriteXML in
RequestXMLWrite.cpp for the new TYPE_ constant. It should call a function
which handles the writing of the XML message. It is assumed in this function
that the RequestData subclass is valid and can be properly written as XML.

 15

7 GUI Walkthrough

7.1 Config Panel

Figure 6: Config Panel Setup

The Config panel is used for changing certain query and display options as well as setting
up the connection to the gateway/frontend node.

Connection parameters are set when the GUI is started, but you can recheck them:

• Click on the "Set connection parameters" button to test the network connection to the
sensor network.

• You should get a message verifying that the connection to the sensor network is working.

 16

7.2 Map Panel

Figure 7: Map Panel – Show Clusters

From left to right, the top buttons are:

• Update map with current node info
• Show/Hide cluster info on the map
• Select cluster set for display
• Select query for display

Start using the GUI:

1. Click on the "Update Map" button (upper left corner) to retrieve node positions and
statuses.

2. Click on "Show Clusters" button to toggle the display to show cluster information.

 17

3. If no cluster information appears, the sensor network was not initialized properly and a
system administrator must re-initialize it.

4. Cluster Set 0 is the default cluster set and must appear for any queries to run.

Figure 8: Map Panel – Show Overlapping Clusters

5. Select a different cluster set to display.
6. In this example, Cluster Set 2 has several overlapping clusters.

 18

7.3 Query Panel

Figure 9: Query Panel

Running an aggregate query:

1. Select a query from the drop down box.
2. This example is a simple aggregate over the temperature sensor. Since each node has one

(simulated) temperature sensor, the query should return the number of active nodes.
3. Fill in a period value. 5 seconds is used for this example.
4. Click on "Use map" for selecting a query region on the map. If the map is not used, all

nodes are selected by default.
5. Click on "Select from map" to switch to the map panel.

 19

Figure 10: Query Panel – Select Area

6. Nodes are selected with box regions or by individual selection.
7. Click on the Box button on the bottom left.
8. In this example, two box region are drawn on the map to correspond to outer

perimeter of nodes
9. Click on the Arrow button on the bottom left.
10. Select the remaining perimeter nodes by clicking on them individually.
11. All selected nodes will change color to red.
12. A different cluster set can be chosen for the query at the top of the panel.
13. Click on "OK" to start the query.

 20

7.4 Results Panel

Figure 11: Results Panel

• Individual tuples from the query will appear in the Results panel.
• Periodic queries will usually take twice the period time to return the first tuples.
• Different query results can be selected from the drop down box for display.

• A summary of the query and its results is also available.
• On the Summary Results panel you can also stop and restart different queries by

using the buttons on the bottom.
• The full XML message that is sent to the gateway node is displayed here as well.
• Notice the list of regions and nodeids associated with the query.

 21

7.5 Detection Queries

Figure 12: Detection Queries

1. Detection queries are treated differently than other ad-hoc queries.
2. Select "Detections: All" from the drop down box.
3. The period for detection queries is set to -1 to indicate that tuples are returned

only when a valid detection has occurred
4. For this query, we are not using the map, so we must select a cluster set in this

panel. This example uses Cluster set 1.
5. Click "Submit query" to start the query.
6. Compare the XML message for the detection query with the previous query.

 22

Figure 13: Detection Queries – Filter by Type

7. Select "Detections: Car" from the drop down box.
8. Note that the XML for the query is the same as for "Detections: All" except for an

extra "WHERE" clause.
9. The different possible target types are:

• Unknown
• Pedestrian
• Bike
• Car
• Tank
• Helicopter
• Airplane

10. By changing the "WHERE" clause, you can form a query to select by any type of
target.

 23

Figure 14: Detection Queries – Show Results

11. On the Map panel, the detection queries will appear in the top selection box.
12. Use the SimTracker to generate simulated detections for your query.
13. After the simulated targets are started, detection results will begin to appear.
14. Different target types display with a different icon and fade over time.
15. You can multi-select which queries to display detections for.
16. This example shows all of the detections.

 24

7.6 Tracking Queries

Figure 15: Tracking Queries

1. Tracking queries run much like detection queries.
2. The period should also be set to -1.
3. In this example, we are running matching tracking queries for the detection

queries, but tracking queries are completely independent of detection queries.
4. Start a query for all tracks and one for only car tracks.

 25

Figure 16: Tracking Queries – Show Results

5. Run the SimTracker simulation again.
6. Track results are displayed as colored arrows with the associated trackid.
7. The arrows fade out over time.
8. Multiselect to display all tracks and all detections.
9. With this display, you can see the actual detections along with tracks.

 26

8 SimTracker Walkthrough

8.1 Map Panel

Figure 17: SimTracker Map Panel

From left to right, the top buttons are:

• Update map with current node info
• Select paths by clicking
• Draw a new path on the map
• Save current path being drawn
• Clear current path being drawn

 27

8.2 Drawing Simulated Paths

Figure 18: Drawing Paths

1. Click on the "Add new path" (pencil) icon.
2. Click on the map to mark the start of the path.
3. Click at the end of the line segment that the target should traverse.
4. New paths being drawn will appear as dashed.
5. In this example, I clicked on the upper left of the map and then followed the road

to the intersection at the upper right.

 28

Figure 19: Saving Paths

6. Add more line segments to make a right turn at the intersection and follow the

road to the edge of the map.
7. Click on the "Save Path" button (the blue box).
8. The path lines will become solid, indicating that they are saved.
9. Newly saved paths are marked as selected, so the path appears red.

 29

8.3 Adding Simulated Targets

Figure 20: Adding Targets

1. Click on "Edit selected path" on the bottom button panel. The last path drawn

should already be selected in red.
2. The target list for the path will appear. Since this is a new path, the list will be

empty.
3. Click on "Add target".
4. The "Add target" dialog will appear. Select "Car" from the drop down box.
5. The target parameters can be changed from the defaults. Mouseovers on the

different parameters will display more information.

 30

Figure 21: Editing Targets

6. After you click "OK", the car will appear in the target list for this path.
7. You can add more targets, edit old targets, or delete targets from the same

window.
8. Once you are done adding targets, click "Close" to return the main Map window.

 31

8.4 Running A Simulation

Figure 22: Simulated Paths

In this example, the targets were created as:

1. A car driving along the top road and then turning right.
2. A bike coming from the bottom left and moving diagonally through the map.
3. A pedestrian starting in the Upson Hall building and then walking towards the

upper left.

The pedestrian path is highlighted in red since it's selected. The other paths are in
nonselected yellow.

 32

Figure 23: Running a Simulation

1. Now we're ready to start the simulation. The box next to the "Start sim" button

sets the number of times to repeat the simulation. Zero means the simulation only
runs once.

2. Click on "Start sim" to begin the simulation.
3. In this example, all three targets start at the same time and move along their

respective paths.
4. When a target is close enough to a node to set off a detection, the node will turn

red.
5. The simulation ends after all of the targets have reached their destinations.
6. If the "Repeat Sim" value is more than zero, the simulation will restart and all

targets will begin again at the start of their paths.

 33

9 Significant Accomplishments Over the Lifetime of the
Contract

9.1 Software

We have developed two version of the Cougar query proxy: Cougar V1.0 version for the
first WINS NG architecture running Windows CE. In January 2001, a Linux-based
architecture for the second generations of the WINS NG nodes was introduced, and we
the developed Cougar V2.0 query proxy on top of Linux for the WINS NG architecture
2.0. Cougar V2.0 performs in-network query evaluation and distributed query processing.
Cougar V2.0 is integrated with the ISI-East Routing Layer for direct deployment on the
WINS 2.0 hardware, and with BAE signal processing to obtain sensor detections. We
also created interfaces to several sensors for direct reading of sensor values into the
Cougar System.

We supplied integration support and software to University of Maryland, Rutgers
University, BAE Systems, and ISI-East for ongoing integration of their work into our
system. Rutgers has integrated their prediction-based query modification into the Cougar
system and they showed a demo of their integration at the PI meeting in November. We
developed an interface between query processing and tracking through a SensIT working
group. The working group consists of Richard Brooks (PSU), Feng Zhao (Xerox Parc)
and Johannes Gehrke (Cornell).

An online demo of our software is still available at http://cougar.cs.cornell.edu.

9.2 Demonstrations

We demonstrated the Cougar System at every PI meeting, and we also demonstrated the
Cougar system during the field experiment in 29 Palms in California. This first version of
Cougar was demonstrated to the DARPA Directorate in 2000, and we also demonstrated
this version of Cougar at the Intel Continuum Computing Conference in March 2000.
We demonstrated the Cougar system in 29 Palms during the field experiment SITEX
2002 in November 2001.

We also demonstrated the Cougar System at the 2002 ACM Sigmod International
Conference on Management of Data to an audience of over 300 attendees in June 2002.
For the final PI meeting in November 2002 in Boston, we also integrated with BAE
Systems and ISI East for a subgroup-demo, and with University of Maryland for a
complete demo. In addition, the Cougar platform was used by several groups as a
scalable middleware infrastructure for distributed query processing, and thus it built the
foundation for the work of several other groups in the project. We participated in several
live test-bed demos at the PI meeting in Boston in November 2002, including an

 34

integration with ISI-East (new GUI), ISI-West (diffusion routing), BAE (signal
processing). Besides diffusion routing, our software is the most widely used component
within the SensIT program.

We demonstrated the complete Cougar system during an evening demo session at the PI
meeting in Boston in November 2002. This included superset of the functionality that we
promised to deliver in the grant, including several integrations with other groups in the
SensIT program. In addition, we also showed Mini-Cougar, a version of Cougar on the
Berkeley motes.

9.3 Publications

• Philippe Bonnet, J. E. Gehrke, and Praveen Seshadri. Querying the Physical
World. IEEE Personal Communications, Vol. 7, No. 5, October 2000, pages 10-
15. Special Issue on Smart Spaces and Environments.

• Philippe Bonnet, J. E. Gehrke, and Praveen Seshadri. Towards Sensor Database
Systems. In Proceedings of the Second International Conference on Mobile Data
Management. Hong Kong, January 2001.

• Zhiyuan Chen, J. E. Gehrke, and Flip Korn. Query Optimization In Compressed
Database Systems. In Proceedings of the 2001 ACM Sigmod International
Conference on Management of Data, Santa Barbara, California, May 2001.

• J. E. Gehrke, Flip Korn, and Divesh Srivastava. On Computing Correlated
Aggregates Over Continual Data Streams. In Proceedings of the 2001 ACM
Sigmod International Conference on Management of Data, Santa Barbara,
California, May 2001.

• Yong Yao and J. E. Gehrke. The Cougar Approach to In-Network Query
Processing in Sensor Networks. Sigmod Record, Volume 31, Number 3,
September 2002.

• Anton Faradjian, J. E. Gehrke, and Philippe Bonnet. GADT: A Probability Space
ADT For Representing and Querying the Physical World. In Proceedings of the
18th International Conference on Data Engineering (ICDE 2002), San Jose,
California, February 2002.

• Alin Dobra, Minos Garofalakis, J. E. Gehrke, and Rajeev Rastogi. Processing
Complex Aggregate Queries over Data Streams. In Proceedings of the 2002 ACM
Sigmod International Conference on Management of Data, Madison, Wisconsin,
June 2002.

• Francis Chu, Joseph Halpern, and J. E. Gehrke. Least Expected Cost Query
Optimization: What Can We Expect? In Proceedings of the 21st ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 2002).
Madison, Wisconsin, June 2002.

• Wai Fu Fung, David Sun, and J. E. Gehrke. COUGAR: The Network is the
Database. In Proceedings of the 2002 ACM Sigmod International Conference on
Management of Data (SIGMOD 2002), Madison, Wisconsin, June 2002. Demo
description.

 35

• Yong Yao and J. E. Gehrke. Query Processing in Sensor Networks. In
Proceedings of the First Biennial Conference on Innovative Data Systems
Research (CIDR 2003), Asilomar, California, January 2003.

• Tobias Mayr, Philippe Bonnet, J. E. Gehrke, and Praveen Seshadri. Leveraging
Non-Uniform Resources for Parallel Query Processing. To appear in Proceedings
of the 3rd IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGrid 2003). Tokyo, Japan, May 2003.

• Abhinandan Das, J. E. Gehrke, and Mirek Riedewald. Approximate Join
Processing Over Data Streams. To appear in Proceedings of the the 2003 ACM
SIGMOD International Conference on Management of Data (SIGMOD 2003).
San Diego, CA, June 2003.

• Rohit Ananthakrishna, Abhinandan Das, J. E. Gehrke, Flip Korn, S.
Muthukrishnan, and Divesh Srivastava. Efficient Approximation of Correlated
Sums on Data Streams. IEEE Transactions on Knowledge and Data Engineering,
Vol. 15, No. 3, May/June 2003, pages 569-572.

10 Final Status On Each Of The Tasks

Task 1: A database query processing system that accepts queries/programs specified
in object-relational SQL, and executes them over a network of sensor and actuator
devices.

The Cougar system for WINS NG1.0 was delivered to BBN. The second generation of
the Cougar System for WINS NG2.0 has been developed and is complete. A prototype of
the Cougar System for WINS NG2.0 has been successfully demonstrated in the desert at
SITEX02 in Twentynine Palms, California; a compete version of the Cougar System has
been shown at the PI meeting in Boston during live demos at the BBN testbed

Task 2: An implementation of a query fragmentation mechanism that optimizes
these placement of fragments maximizing proximity to sensor data sources, but
constrained by the resource limitations of the sensor nodes

Cougar 2.0 implements distributed aggregation operators and places them on nodes inside
the network. Cougar also implements a triggering mechanism that can trigger events from
inside the network.

Task 3: A resource management layer that enables the collection of dynamic
statistics on resource usage for feedback into execution / optimization.

We have designed a prototype adaptive query processing layer, and an initial version is
implemented in the latest Cougar Software. A limiting factor was the time commitment
required to integrate with other SensIT components, as we were designated as a core
components and were integrating with several other partners in the SensIT program.

 36

11 Percent of Technical Completion

Programmed ___100__ % Actual _100___ %

12 Appendix

Attached to this final report are four selected papers that are representative of the work in
our effort:

• Philippe Bonnet, J. E. Gehrke, and Praveen Seshadri. Querying the Physical
World. IEEE Personal Communications, Vol. 7, No. 5, October 2000, pages 10-
15. Special Issue on Smart Spaces and Environments.

• Philippe Bonnet, J. E. Gehrke, and Praveen Seshadri. Towards Sensor Database
Systems. In Proceedings of the Second International Conference on Mobile Data
Management. Hong Kong, January 2001.

• Anton Faradjian, J. E. Gehrke, and Philippe Bonnet. GADT: A Probability Space
ADT For Representing and Querying the Physical World. In Proceedings of the
18th International Conference on Data Engineering (ICDE 2002), San Jose,
California, February 2002.

• Yong Yao and J. E. Gehrke. Query Processing in Sensor Networks. In
Proceedings of the First Biennial Conference on Innovative Data Systems
Research (CIDR 2003), Asilomar, California, January 2003.

We also attached the demo report for one of the Cougar demos that we gave:

• Wai Fu Fung, David Sun, and J. E. Gehrke. COUGAR: The Network is the
Database. In Proceedings of the 2002 ACM Sigmod International Conference on
Management of Data (SIGMOD 2002), Madison, Wisconsin, June 2002. Demo
description.

he widespread deployment of
sensors, actuators, and mobile devices is transforming the physi-
cal world into a computing platform. We will soon find comput-
ing power, memory, and communication capabilities on
temperature sensors and motion detectors, on door locks, light
bulbs, and alarms, on every cellular phone, in every vehicle, and
soon in every person’s wallet or on their key ring. Emerging
networking techniques ensure that devices are interconnected
and accessible from local- or wide-area networks [1].

Using this new computing platform, users interact with
portions of the physical world. In a large class of applications,
users monitor phenomena in a given environment. Examples
of monitoring applications include gathering information in a
disaster area, supervising items in a factory warehouse, or
controlling vehicle traffic in a large city [2, 3].

Let us take the concrete example of an existing flood
detection system. For about twenty years now, the ALERT
system has been deployed in several US states
(http://www.alertsystems.org). A typical ALERT installation
consists of several types of sensors in the field: rainfall sen-
sors, water level sensors, weather sensors, etc. A predefined
set of data is regularly extracted from each sensor, transferred
to a central site and stored in a database system. Users query
the database system through a graphical user interface. Here
are some example queries that users can express: “For each
rainfall sensor, display the average level of rainfall for 1999,”
Display the current level of rainfall for all sensors in Tomp-
kins County, or “Every hour, display the location of the sen-
sors where the level of rainfall is greater than 250 mm.”

Query Processing over Device Networks
The example of the flood detection system emphasizes that
monitoring is best described in a declarative manner: users
submit queries concerning a device network regardless of its
physical structure or its organization. In monitoring applica-
tions, users typically ask three kinds of queries:
• Historical queries: These are typically aggregate queries

over historical data obtained from the device network, e.g.,
“For each rainfall sensor, display the average level of rain-
fall for 1999.”

• Snapshot queries: These queries concern the device net-
work at a given point in time, e.g., “Retrieve the current
rainfall level for all sensors in Tompkins County.”

• Long-running queries: These queries concern the device
network over a time interval, e.g., “For the next five hours,
retrieve every 30 seconds the rainfall level for all sensors in
Tompkins County.”
The existing ALERT system implements a warehousing

approach, where data are extracted from the devices in a pre-
defined way and stored in a centralized database system that
is responsible for query processing. This warehousing
approach is well suited for aggregate queries asked over his-
torical data; however, it has two major limitations:
• The warehousing approach dissociates access to devices

from the query workload. For instance, in an emergency sit-
uation, a fire department might require that specific data
be accessed in a group of sites in order to decide on actions
to take: “Every minute, display the rainfall level obtained
from all sensors in Tompkins County.” This long-running
query cannot be answered in a traditional system if data is
extracted from the sensors too infrequently. One solution
would be to continuously extract all data from each device
and transfer them to the database server. This solution is
not feasible in practice because it might not be possible to
extract all data from a sensor (e.g., a camera takes mea-
surements in only one direction and it is not possible to
measure data in all directions simultaneously) or because it
is too expensive to transmit a continuous flow of raw data
through the device network.

• The warehousing approach uses valuable resources to
transfer large amounts of raw data from devices to the
database server. Excessive resources are consumed at each
device and on the network when transmitting large volumes
of data. First, it is in general not necessary to extract data
from the whole device network to answer a given query. In
our example, the group of sensors sending data back to the
database server should be reduced to sensors located in
Tompkins County. Second, modern devices include process-
ing capabilities that could be used to process data locally
and thus reduce data transfer and energy consumption.
Our alternative to a warehousing approach is a distributed

approach where the query workload determines the data that
are extracted from remote sites, and where possibly portions

IEEE Personal Communications • October 200010 1070-9916/00/$10.00 © 2000 IEEE

T

Querying the Physical World
Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri,

Cornell University

Abstract
In the next decade, millions of sensors and small-scale mobile devices will integrate processors, memory, and communication capabilities.

Networks of devices will be widely deployed for monitoring applications. In these new applications, users need to query very large collections of
devices in an ad hoc manner. Most existing systems rely on a centralized system for collecting device data. These systems lack flexibility because

data is extracted in a predefined way. Also, they do not scale to a large number of devices because large volumes of raw data are transferred.
In our new concept of a device database system, distributed query execution techniques are applied to leverage the computing capabilities of

devices, and to reduce communication. In this article, we define an abstraction that allows us to represent a device network as a database
and we describe how distributed query processing techniques are applied in this new context.

Praveen Seshradi is currently on leave at Microsoft. 37

goodelle
Text Box
Appendix A:

IEEE Personal Communications • October 2000 11

of queries are executed on devices. This approach allows the
database system to control the resources that are used; it is
primarily targeted at snapshot and long-running queries. In
addition, aggregate queries over historical data could be eval-
uated against materialized data stored on some devices
instead of a centralized server. We call a database system that
enables distributed query processing over a device network a
device database system . We study such systems in the
COUGAR Device Database Project at Cornell University.

The DataSpace project at Rutgers (http://www.cs.rutgers.
edu/dataman/) recognized the advantages of the distributed
approach over the warehousing approach for querying device
networks [4]. In a DataSpace, devices encapsulating data can
be queried, monitored, and controlled. Network primitives are
developed to guarantee that only relevant devices are contact-
ed when a query is evaluated.

Device Database Systems
In this article, we explain our new concept of a device
database system, an area that we consider a very fruitful direc-
tion for new research. We will describe database abstractions
for representing devices and we illustrate how queries are for-
mulated in SQL with minimal additions to the language.
Later, we use an example to show how distributed query pro-
cessing techniques are applied in the new context of a device
database system. We use an analytical model to illustrate the
benefits of our approach.

We would like to point out that the methods described in
this article represent the first generation of our system [5]. The
core components of the first-generation COUGAR system are
implemented and fully functional. We demonstrated the system
at the Intel Computing Continuum Conference [6]. Note that
in this article we do not address several of the specific research
challenges that lie ahead, such as new query processing strate-
gies to leverage computing capabilities on the devices, query
processing strategies that adapt to changing conditions in the
network, decentralized meta-data management, and administra-
tion. We overview these issues as we conclude.

Device Database Systems
We call a physical object with computing and communication
capabilities a device. Some devices embed computing and com-
munication capabilities (e.g., WINS sensor nodes [7], Smart
Dust Motes [8], cell phones, or Smartcards) while others are
composed of a physical object connected to an external comput-
er (e.g., a door actuator connected to a desktop computer).
Devices are interconnected and accessible from a local- or wide-
area network. Some devices are stationary, others are mobile;
some devices are always connected to the network, others inter-
mittently. In this article we concentrate on stationary devices.

Database Abstractions for Representing Devices
In the warehousing approach, discussed earlier, devices are
not part of the database system; they are accessed using a pre-
defined extraction procedure that populates relations in the
centralized database system. Our goal in a device database
system is to access devices directly when processing queries.
We thus need to represent devices in the database system.

Let us first refine our definition of devices. We consider
that each device is a mini-server that supports a set of func-
tions and can process portions of the queries directly at the

device.1 A function either (a) acquires, stores and processes
data or (b) triggers an action in the physical world. Both
kinds of functions return results (at least a status report or
an error message). We distinguish between synchronous and
asynchronous functions. Synchronous functions return results
immediately, on-demand; they are used to monitor continu-
ous phenomena, e.g., a function that returns the rainfall
level. Asynchronous functions return results after an arbi-
trary period of time; they are used to monitor threshold
events, e.g., a function that detects an abnormal rainfall
level. Functions provided by an intermittently connected
device can only return results when the device is connected;
they are asynchronous functions. Stationary devices, e.g.,
rainfall sensors, may support both synchronous and asyn-
chronous functions.

We need to represent the set of functions provided by
devices at the database level. We distinguish two levels of rep-
resentation:
• User representation — how are devices modeled in the

database schema?
• Internal representation — how are devices represented

internally?

User Representation — Today’s object-relational and object-
oriented databases support Abstract Data Type (ADT)
objects that are single-attribute values encapsulating a collec-
tion of related data [9]. Note that there are natural parallels
between devices and ADTs. Both ADTs and devices provide
controlled access to encapsulated data through a well defined
interface. We build upon this observation by modeling each
type of device in the network as an ADT. The public interface
of the ADT corresponds to the specific functions supported
by the device. An actual ADT object in the database corre-
sponds to a physical device in the real world.

Let us model the database schema corresponding to the
flood detection example earlier. We consider a simplified
schema that consists of the following relation:

RFSensors(Sensor, X, Y)

A record in the RFSensors relation has three attributes.
The first attribute, called Sensor, is an ADT that represents
the physical rainfall sensors. The actual sensor data is located
on the rainfall sensor; the ADT Sensor provides functions for
accessing the data. For example, Sensor.getRainfallLevel()
returns the current level of rainfall measured in mm. The
other two attributes denote the location of the sensor accord-
ing to some coordinate system.

Internal Representation — Before discussing the internal
representation of ADT functions, let us recall some back-
ground knowledge about query processing and the internals of
a database system. Query processing classically proceeds as
follows. The database system accepts a query, produces a
query execution plan, executes this plan against the database,
and produces the answer. The execution plan is the internal
blueprint for evaluating a query. It combines algebraic opera-
tors (e.g., selection, projection, and join operators in the rela-
tional algebra), which serve as the basic building blocks for
manipulating data (i.e., relations that are sets of records).

In object-relational database systems, ADT functions are
either represented as expressions [9] or as joins involving vir-
tual relations [10].2 When an expression containing an ADT
function is evaluated, a (local) function is called to obtain its

1 Embedding a database server on a device is realistic. All major database
vendors propose database servers for palm-sized PCs, which represent the
processing capabilities that we can expect from all devices in a near future.

2 Table functions defined in IBM DB2 associate a user-defined function
with a virtual relation.

38

IEEE Personal Communications • October 200012

return value. It is assumed that this return value is readily
available on-demand. This assumption does not hold in a
device database system for two reasons. First, functions corre-
sponding to device ADT functions may incur high latency due
to their distant location from the database server. Second,
some device functions are asynchronous and thus a call to
such a function may incur an arbitrary delay.

A virtual relation is a tabular representation of a function.
A record in a virtual relation (called a virtual record) contains
the input arguments and the output argument of the function
with which it is associated.3 Such relations are called virtual
because they are not actually defined in the database schema,
as opposed to base relations. In COUGAR, we use virtual
relations for the internal representation of device functions.

If a device function M takes m arguments, then the schema
of its associated virtual relation Attrs(VR) has m+3 attributes,
where the first attribute corresponds to the unique identifier of
a device (i.e., the identifier of an actual device ADT object),
attributes 2 to m+1 correspond to the input arguments of M,
attribute m+2 corresponds to the output value of M, and
attribute m+3 is a time stamp corresponding to the point in
time at which the output value is obtained.4 We assume global
time. Each time stamp thus determines a position in an ordered
domain shared across all devices. As a consequence, each virtu-
al relation could be considered as a sequence [11].

In our example, the database schema consists of one base
relation (RFSensors) and of a virtual relation VRFSensorsGe-
tRainfallLevel for the function getRainfallLevel(). Since this
function takes no input arguments, the virtual relation has
three attributes: Sensor, Level, and TimeStamp, i.e., the identi-
fier of the Sensor device, the Level of rainfall measured, and
the associated TimeStamp.

Note that a virtual relation has specific properties:
• A virtual relation is append-only; new records are inserted

in a virtual relation when the associated device function
returns a result. Records in a virtual relation are never
updated or deleted.

• A virtual relation is naturally partitioned across all devices
represented by the same device ADT. Each device function
contributes to a portion of the virtual relation to which it is
associated.
The latter observation has an interesting consequence: a

collection of devices is internally represented as a distributed
database. Virtual relations are partitioned across a set of
devices. Base relations are either stored on a central database
server or partitioned across devices.5

The Cougar System consists of a front-end server connected
to a set of devices. The front-end includes a full-fledged
database server. Devices include a lightweight query execution
engine that is responsible for accessing virtual relations and for
processing query fragments that involve these virtual relations.

Queries over a Device Database
Recall that we consider historical queries, snapshot queries,
and long-running queries over a device network. Historical

and snapshot queries are naturally formulated as declarative
queries in SQL. Long-running queries are also formulated in
SQL with little modifications to the language. We add clauses
for specifying the duration of a long-running query; the choice
of syntax is arbitrary.

Because of space limitation, we do not describe the com-
plete query semantics here; the interested reader is referred to
Bonnet et al. [12] for details. Note that long-running queries
involving time windows (in particular aggregates over time win-
dows) are best expressed using temporal extensions to the rela-
tional model [13, 14] or using a sequence model [11].

We now provide an example of a long-running query based
on the flood detection application presented earlier.

Query Q: “Retrieve every 30 seconds the rainfall level if it is
greater than 50 mm.”

SELECT R.Sensor.getRainfallLevel()
FROM RFSensors R
WHERE R.Sensor.getRainfallLevel() > 50
AND $every(30);

The function $every(30) specifies that a new record is
inserted every 30 seconds into the append-only virtual relation
corresponding to the function RFSensor.getRainfallLevel().
This record is propagated within the query execution plan
chosen for the long-running query, and possibly a new answer
is generated. Note that a long-running query is not evaluated
by repeatedly executing the declarative query over the new
records inserted in the virtual relations. (This would be a form
of polling and it would introduce an arbitrary delay into the
processing of device data.)

Query Processing in a
Device Database System

In this section, we concentrate on a simple example to give an
overview of query processing and to show the benefits of the
distributed query processing approach versus a warehousing
approach. Because of space limitation, we do not cover here
all the issues related to query processing in a device database
system. We first define new performance metrics and then
discuss our example.

Performance Metrics
When processing a query, a database system first constructs an
execution plan. The query optimizer is responsible for generat-
ing the execution plan that minimizes a given cost function.

The traditional performance metrics in a database system
are throughput and response time. Throughput is the average
number of queries processed per unit of time; it depends on
the total work performed in the system to evaluate a query.
Response time is the time needed by the system to produce
all answer records to a query.

For long-running queries in a device database system, the
traditional performance metric of query response time
becomes obsolete: the query will always run for a given time
interval, with varying resource usage.

We define two new metrics that correspond to the perfor-
mance goals of a device database system:
• Resource usage: The total amount of energy consumed by

the devices when executing a query. Resource usage is
expressed in Joules.

• Reaction time: The interval between the time a function,
called on a device, returns a value, and the time the corre-
sponding answer is produced on the front-end. Reaction
time is expressed in seconds.
The problem now is twofold:

• To define cost models for resource usage and reaction time.

3 We assume without loss of generality that a device function has exactly
one return value; an extension to the general case is straightforward.

4 Note that for mobile devices, we might integrate the location of the device
as an additional attribute in the virtual relation.

5 It is particularly interesting to partition a base relation that references a
device ADT in a system where devices frequently join or leave the network;
partitioning the base relation thus avoids maintaining centralized informa-
tion concerning the devices currently in the system.

39

IEEE Personal Communications • October 2000 13

• To obtain and maintain correct settings for the system
parameters from the cost model, i.e., settings that actually
reflect the status of a given device database system over time.

Example
Our goal in this section is not to cover all issues related to
query processing in a device database system, but rather to
illustrate how existing distributed database techniques can be
applied in this new context [15, 16]. We discuss the character-
istics of device database systems with respect to existing dis-
tributed database systems and use an analytical model to
illustrate the benefits of our approach.

Query Q1: “Retrieve every 30 seconds the rainfall level if it is
greater than 50 mm.”

SELECT VR.value
FROM VRFSensorsGetRainfallLevel VR, RFSensors R
WHERE VR.Sensor = R.Sensor AND VR.value > 50

AND $every(30);
We use as our example the query Q1, which is the result of

rewriting query Q using the virtual relation VRFSensorsGe-
tRainfallLevel. This query could be used to monitor the evolu-
tion of rainfall in flooded areas. We consider a system with
200 devices; the cardinality of relation R is therefore 200
records. Query Q1 is run as a long-running query with a dura-
tion of four hours. The rainfall level is measured every 30 sec-
onds; as a result, up to 480 virtual records are inserted into
each partition of the virtual relation.

Distributed Query Execution Plans — SQL queries usually
have a large space of possible execution plans. These are
obtained by considering various shapes for the tree of relational
operators, by permuting the position of relational operators in
this tree, by choosing various implementations for a relational
operator (in particular, each database system implements a set
of join methods, e.g., nested loop, sort-merge, hash-join, semi-
join), and by permuting the relative position of sub-trees [17]. In
a distributed context, the execution plan reflects the distributed
nature of the database: it is composed of query fragments, i.e.,
sub-trees of relational operators, assigned to execution sites.

Three more dimensions are thus added to the space
of possible execution plans: What are the candidate
execution sites? How are query fragments associat-
ed to execution sites? What is the strategy for trans-
ferring data from one site to another?

Figure 1 presents four execution plans for Q1;
each plan is a tree of relational operators that
manipulate base and virtual relations. Plan T rep-
resents the execution plan that would be generat-
ed for Query Q1 in a traditional system such as
ALERT. Data extracted from the devices are
materialized in the relation VR that is located on
the front-end (represented as a darker shaded
rectangle). The execution plan is a simple tree
composed of one join operator between relation R
and relation VR (using joining condition R.Sensor
= VR.Sensor AND VR.value > 50). This join is
executed on the front end.

The other execution plans illustrate the use of
distributed database techniques in a device
database system. Plan A is also a simple tree
where R is joined on the front end with relation
VR partitioned across a set of devices (represent-
ed as lighter shaded rectangles). This execution
plan is evaluated as follows. The front end asks
each device to measure rainfall level and to trans-
fer the resulting virtual records back to the front
end. (Virtual records are produced once on each

site for a snapshot query, and repetitively for a long-running
query). Each virtual record arriving on the front end is then
joined with relation R.

Intuitively, this execution plan is not optimal: all devices
with rainfall sensors transmit data to the front end while the
query only concerns the sensors that measure a rainfall level
greater than 50. An alternative execution plan pushes the join
to the devices, thus trading increased processing on devices
for reduced network traffic. Instead of pushing the join
between R and VR to each device, Plan B defines a semi-join
between relation R and the partitions of the virtual relation
VR located on the devices [16]. The semi-join projects out the
joining attribute from relation R (here the device id Sensor)
and sends the resulting relation to all devices; a semi-join
avoids transferring the complete relation R to all devices. On
the devices, whenever the rainfall level is measured, a virtual
record is generated and it is joined with the portion of rela-
tion R sent by the front end (using joining condition R.Sensor
= VR.Sensor and VR.value > 50). If the joining condition is
verified, then the virtual record is sent back to the front end,
where it is joined with complete records from relation R (not
only the joining attribute). Only the sensors whose rainfall
level is greater than 50 send data back to the front end.

A third execution plan only pushes the selection (VR.value
> 50) onto the devices; only records that verify this condition
are sent back to the front end, where they are joined with
relation R. Plan C represents this execution plan. Compared
to Plan B, there is no subset of relation R transmitted to the
devices. We compare the resource usage of these three execu-
tion plans in the next section.

Analytical Model — We use a simple analytical model to
compare the costs of the three execution plans identified in
the previous section. We assume a multi-cluster, single-hop
WINS network [7]. There are 20 clusters each containing 10
devices. We consider the total energy consumed per sensor
node as the linear combination of CPU costs, the cost of a
memory access, the cost of sending a message, and the cost of
sending N bytes on the network:

� Figure 1. Execution plans for Query Q1.

VR
VR

σ
|

VR

σ
|

VR

VR
VR

Traditional: Plan T Plan A

Plan CPlan B

σ
|

VR

R

VR

VR

Materialized VR R

R

R

40

IEEE Personal Communications • October 200014

Cost in Joules = Wcpu * CPU +
Wram * RAM

+ Wsend * NbMsgs
+ Wbdw * SizeMsgs

The weight factors are used to trans-
fer all components of the cost into
Joules. Table 1 lists the weight factors
we used for our experiments. The fac-
tors were obtained by W. Kaiser and G.
Pottie, through measurements in a
WINS network composed of sensor nodes from Sensoria
Corp. [7]. The energy needed by the processor to operate
dominates the energy needed by the RAM, so we set Wram =
0. The cost per record of a join or a selection is NbInstPer-
Comp instructions. We do not model the cost of invoking the
device function. The cost per message is due to synchroniza-
tion between the sending and receiving nodes. We consider
that nodes are 30 meters from each other. In this case the cost
of sending 1000 bytes is 0.23J. (Note that the capacity of a
battery on a WINS sensor node is 3.5E4 Joules.) We further
assume that the size of each virtual record is 50 bytes.

We study resource usage on sensor nodes directly involved
in the query (i.e., the nodes on which a partition of the virtual
relation is located); we do not consider resource usage on the
nodes that are traversed for communication purposes. Each
sensor node satisfies the condition in query Q1 (Vr.value >
50) with a certain probability. We trace the resource usage in
the two extreme cases, i.e., for sensor nodes that are always
located outside a flood area and whose rainfall level is thus
never greater than 50, and for sensor nodes that are always
located inside a flood area.

Figure 2 traces the resource usage expressed in Joules as a
function of time (given that the rainfall level is measured
every 30 seconds) for nodes always located outside a flood
area. With Plan A, data is sent back to the front end whenev-
er it is generated. With Plan B and, respectively, Plan C, a
join and, respectively, a selection, are pushed to the device.
As a result, the condition on the rainfall level is checked on
the devices and none of the devices located outside a flood
area sends data back to the front end. Plan B pays the initial
cost of transferring a fragment of relation R to the devices.
This initial cost is amortized (compared to Plan A) during the
lifespan of a long-running query.

Figure 3 traces the resource usage
expressed in Joules as a function of
time (given that the rainfall level is
measured every 30 seconds) for nodes
always located inside a flood area. With
all plans, data is always sent back to the
front end. The initial cost of Plan B is
here never amortized. Plan C and Plan
A have almost similar curves; this illus-
trates that the cost of performing a

selection is low compared to the cost of sending data.
In this example, pushing a selection as in Plan C is the opti-

mal choice. This is intuitive since the query filters out uninter-
esting events generated on the devices. Pushing the selection
allows the device database system to trade efficiently increased
processing on the devices for reduced communication.

Conclusions
In the near future, devices with processing and communica-
tion capabilities will be deployed in the physical world, pro-
viding a powerful computing platform. The first generation
of the Cornell Cougar systems demonstrates that the appli-
cation of database technology to this new computing plat-
form shows much promise for providing flexible and scalable
access to large collections of devices. Our work has intro-
duced a set of research problems, and we now provide a
brief overview of some of the questions that our ongoing
research is addressing:

Meta-data management: Current distributed database opti-
mizers assume global knowledge, i.e., the optimizer has access
to exact meta-information about the complete system. In a
device database system, we cannot assume that a single site
maintains global knowledge about the system because of the
large scale and dynamic nature of a device network, and
because it would incur a significant administration overhead.
How can we maintain meta-data in a decentralized way and
how can we utilize this information to devise good query plans?

Query processing: Query processing should take advantage
of the computing capabilities at the devices in order to mini-
mize the total amount of resources consumed in the device net-
work while minimizing reaction time. In addition, conditions in
a device network change over time. Devices fail, move, or dis-
connect, the network topology may evolve, and batteries are
used and recharged. Thus query plans must adapt dynamically

� Figure 2. Resource usage for sensors located outside a flood
area.

5000

C
os

t
in

 J
ou

le
s

Time (sec.)

1000

2000

3000

4000

5000

6000

7000

0
10000 15000 200000

Plan A
Plan B
Plan C

� Figure 3. Resource usage for sensors located inside a flood
area.

5000

C
os

t
in

 J
ou

le
s

Time (sec.)

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0
10000 15000 200000

Plan A
Plan B
Plan C

� Table 1. Parameters and settings for
modeling resource usage.

Wcpu 0.000001 J/instruction

Wram 0

Wsend 0.059 J/msg

Wbdw 0.23 J/Kbytes

NbInstPerComp 5000

41

IEEE Personal Communications • October 2000 15

to changing network conditions and they must show a certain
degree of robustness against device failures. In addition, for
long-running queries the conditions in the device network
might change significantly while the query runs.

Acknowledgments
We thank Stephane Bressan and Tobias Mayr, who helped
debug earlier versions of this article, as well as the reviewers for
helpful comments. This article benefited from interactions with
the SensIT community. In particular, Bill Kaiser provided valu-
able information concerning the Sensoria WINS network. This
work is sponsored by the Defense Advanced Research Projects
Agency (DARPA) and Air Force Research Laboratory, Air
Force Material Command, USAF, under agreement number F-
30602-99-0528, by the National Science Foundation under
Grant No. EIA 97-03470, by NSF Grant IIS-9812020, and by a
grant from Microsoft Research to Philippe Bonnet.

References
[1] D. Estrin, R. Govindan, and J. Heidemann (Eds.), “Embedding the Inter-

net,” Communications of the ACM, vol. 43, no. 5. May 2000.
[2] DARPA: SenseIT Project, http://www.darpa.mil/ito/research/sensit/back-

ground.html
[3] D. Estrin et al., “Next Century Challenges: Scalable Coordination in Sen-

sor Networks,” Mobicom ’99, Seattle, Washington, pp. 263–70.
[4] T. Imielinski and S. Goel, “DataSpace: Querying and Monitoring Deeply

Networked Collections in Physical Space,” MobiDE 1999, pp. 44–51.
[5] P. Bonnet and P. Seshadri, “Device Database Systems, poster paper,”

Proc. Int’l. Conf. Data Engineering ICDE’99, San Diego, CA, Mar. 2000.
[6] Intel Computing Continuum Conf., http://www.intel.com/intel/cccon/
[7] J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Mobile Networking for Smart

Dust,” ACM/IEEE Intl. Conf. Mobile Computing and Networking (Mobi-
Com ’99), Seattle, WA, Aug. 17–19, 1999

[8] G. Pottie and W. Kaiser, “Wireless Integrated Network Sensors (WINS):
Principles and Approach,” Communications of the ACM, vol. 43, no. 5,
May 2000.

[9] P. Seshadri, “Enhanced Abstract Data Types in Object-Relational
Databases,” VLDB Journal, vol. 7, no. 3, 1998, pp. 130–40.

[10] U. Schreierf et al., “Alert: An Architecture for Transforming a Passive
DBMS into an Active DBMS,” VLDB, 1991, pp. 469–78.

[11] P. Seshadri, M. Livny, and R. Ramakrishnan, “SEQ: A Model for
Sequence Databases,” ICDE 1995.

[12] P. Bonnet et al., “Query Processing in a Device Database System,” Cor-
nell Technical Report TR99-1775, Oct. 1999.

[13] A. Tansel et al., Temporal Database: Theory, Design and Implementa-
tion, Benjamin/Cummings, 1993.

[14] A.Dekhtyar, R. Ross, and V. S. Subrahmanian, “Probabilistic Temporal
Databases: Algebra,” Jan. 1999, University of Maryland technical report
CS-TR-3987, submitted to ACM Trans. Database Systems.

[15] L. F. Mackert and G. M.Lohman, “R* Optimizer Validation and Performance
Evaluation for Distributed Queries,” Proc. Int’l. VLDB Conf., pp. 149–59,
Kyoto, Japan, Aug. 1986, Management Systems. ICOD 1980: pp. 204–15.

[16] C. T. Yu, “Distributed Database Query Processing,” Query Processing in
Database Systems, 1985: pp. 48–61.

[17] R. Ramakrishnan and J. Gehrke, Database Management Systems, Sec-
ond Edition, McGraw Hill, 1999.

Biographies
PHILIPPE BONNET (bonnet@cs.cornell.edu) received a Ph.D. from the Univer-
site de Savoie in 1999. He is currently a research associate in the Depart-
ment of Computer Science at Cornell University. His current research
interests involve device database systems, database tuning, and next-gener-
ation database systems. He is a member of the ACM and the IEEE Comput-
er Society.

JOHANNES GEHRKE (johannes@cs.cornell.edu) received his Ph.D. degree from
the University of Wisconsin in 1999. He is currently an assistant professor
in the Department of Computer Science at Cornell University. His research
is in the areas of data mining and database systems. He is the recipient of
an IBM Faculty Award and he serves on the editorial board of Knowledge
and Information Systems. He is the co-author of the textbook Database
Management Systems (Second Edition) published by McGraw Hill in 1999.
He is a member of the ACM and the IEEE Computer Society.

PRAVEEN SESHADRI (praveen@cs.cornell.edu) received a Ph.D. from the Univer-
sity of Wisconsin-Madison in 1996. He is an assistant professor in the
Department of Computer Science at Cornell University, currently on leave at
Microsoft. His research is in the area of next-generation database systems
and data management for personal devices. He received an IBM Faculty
Award and an NSF Career Award. He is a member of the ACM and the IEEE
Computer Society.

42

Towards Sensor Database Systems

Philippe Bonnet, Johannes Gehrke, Praveen Seshadri1

Computer Science Department, Upson Hall
Cornell University

Ithaca, NY, 14853 USA
{bonnet,johannes,praveen}@cs.cornell.edu

Abstract. Sensor networks are being widely deployed for measurement,
detection and surveillance applications. In these new applications, users issue
long-running queries over a combination of stored data and sensor data. Most
existing applications rely on a centralized system for collecting sensor data.
These systems lack flexibility because data is extracted in a predefined way;
also, they do not scale to a large number of devices because large volumes of
raw data are transferred regardless of the queries that are submitted. In our new
concept of sensor database system, queries dictate which data is extracted from
the sensors. In this paper, we define a model for sensor databases. Stored data
are represented as relations while sensor data are represented as time series.
Each long-running query formulated over a sensor database defines a persistent
view, which is maintained during a given time interval. We also describe the
design and implementation of the COUGAR sensor database system.

1 Introduction

The widespread deployment of sensors is transforming the physical world into a
computing platform. Modern sensors not only respond to physical signals to produce
data, they also embed computing and communication capabilities. They are thus able
to store, process locally and transfer the data they produce. Still, at the heart of each
sensor, a set of signal processing functions transform physical signals such as heat,
light, sound, pressure, magnetism, or a particular motion into sensor data, i.e.,
measurements of physical phenomena as well as detection, classification or tracking
of physical objects.

Applications monitor the physical world by querying and analyzing sensor data.
Examples of monitoring applications include supervising items in a factory
warehouse, gathering information in a disaster area, or organizing vehicle traffic in a
large city [6]. Typically, these applications involve a combination of stored data (a list
of sensors and their related attributes, such as their location) and sensor data. We call
these sensor databases. This paper focuses on sensor query processing – the design,
algorithms, and implementations used to run queries over sensor databases. The

1 Praveen Seshadri is currently on leave at Microsoft: 3/1102 Microsoft, One Microsoft Way,

Redmond, WA. pravse@microsoft.com.

43

goodelle
Text Box
Appendix B:

concepts developed in this paper were developed under the DARPA Sensor
Information Technology (SensIT) program [22].
We define a sensor query as a query expressed over a sensor database. A typical
monitoring scenario involves aggregate queries or correlation queries that give a
bird’s eye view of the environment as well as queries zooming on a particular region
of interest. Representative sensor queries are given below in Example 1.
Example 1 (Factory Warehouse): Each item of a factory warehouse has a stick-on
temperature sensor attached to it. Sensors are also attached to walls and embedded in
floors and ceilings. Each sensor provides two signal-processing functions: (a)
getTemperature() returns the measured temperature at regular intervals, and (b)
detectAlarmTemperature(threshold) returns the temperature whenever it crosses a
certain threshold. Each sensor is able to communicate this data and/or to store it
locally. The sensor database stores the identifier of all sensors in the warehouse
together with their location and is connected to the sensor network. The warehouse
manager uses the sensor database to make sure that items do not overheat. Typical
queries that are run continuously include:
− Query 1: “Return repeatedly the abnormal temperatures measured by all sensors.”
− Query 2: “Every minute, return the temperature measured by all sensors on the

third floor”.
− Query 3: “Generate a notification whenever two sensors within 5 yards of each

other simultaneously measure an abnormal temperature”.
− Query 4: “Every five minutes retrieve the maximum temperature measured over

the last five minutes”.
− Query 5: “Return the average temperature measured on each floor over the last 10

minutes”.
These example queries have the following characteristics:
• Monitoring queries are long running.
• The desired result of a query is typically a series of notifications of system activity

(periodic or triggered by special situations).
• Queries need to correlate data produced simultaneously by different sensors.
• Queries need to aggregate sensor data over time windows.
• Most queries contain some condition restricting the set of sensors that are involved

(usually geographical conditions).
As in relational databases, queries are easiest to express at the logical level. Queries
are formulated regardless of the physical structure or the organization of the sensor
network. The actual structure and population of a sensor network may vary over the
lifespan of a query.

Clearly, there are similarities with relational database query processing. Indeed,
most applications combine sensor data with stored data. However, the features of
sensor queries described here do not lend themselves to easy mapping to relational
databases and sensor data is different from traditional relational data (since it is not
stored in a database server and it varies over time).

There are two approaches for processing sensor queries: the warehousing approach
and the distributed approach. The warehousing approach represents the current state-
of-the-art. In the warehousing approach, processing of sensor queries and access to
the sensor network are separated. (The sensor network is simply used by a data

44

collection mechanism.) The warehousing approach proceeds in two steps. First, data
is extracted from the sensor network in a predefined way and is stored in a database
located on a unique front-end server. Subsequently, query processing takes place on
the centralized database. The warehousing approach is well suited for answering
predefined queries over historical data.

The distributed approach has been described in [2][3] and is the focus of this paper.
In the distributed approach, the query workload determines the data that should be
extracted from sensors. The distributed approach is thus flexible – different queries
extract different data from the sensor network – and efficient – only relevant data are
extracted from the sensor network. In addition, the distributed approach allows the
sensor database system to leverage the computing resources on the sensor nodes: a
sensor query can be evaluated at the front-end server, in the sensor network, at the
sensors, or at some combination of the three.

In this paper, we describe the design space for a sensor database system and
present the choices we have made in the implementation of the Cornell COUGAR
system. This paper makes the following contributions:
1. We build on the results of Seshadri et al. [19] to define a data model and long-

running queries semantics for sensor databases. A sensor database mixes stored
data and sensor data. Stored data are represented as relations while sensor data are
represented as time series. Each long-running query defines a persistent view,
which is maintained during a given time interval.

2. We describe the design and implementation of the Cornell COUGAR sensor
database system. COUGAR extends the Cornell PREDATOR object-relational
database system. In COUGAR, each type of sensor is modeled as a new Abstract
Data Type (ADT). Signal-processing functions are modeled as ADT functions that
return sensor data. Long-running queries are formulated in SQL with little
modifications to the language. To support the evaluation of long-running queries,
we extended the query execution engine with a new mechanism for the execution
of sensor ADT functions. The initial version of this system has been demonstrated
at the Intel Computing Continuum Conference [7].

Addressing these issues is a necessary first step towards a sensor database system. In
addition, a sensor database system should account for sensor and communication
failures; it should consider sensor data as measurements with an associated
uncertainty not as facts; finally, it should be able to establish and run a distributed
query execution plan without assuming global knowledge of the sensor network. We
believe that these challenging issues can only be addressed once the data model and
internal representation issues have been solved.

2 A Model for Sensor Database Systems

In this section, we introduce definitions for sensor databases and sensor queries. We
build on existing work by Seshadri et al [19] to define a data model for sensor data
and an algebra of operators to formulate sensor queries.

45

2.1 Sensor Data

A sensor database involves stored data and sensor data. Stored data include the set of
sensors that participate in the sensor database together with characteristics of the
sensors (e.g., their location) or characteristics of the physical environment. These
stored data are best represented as relations. The question is: how to represent sensor
data? First, sensor data are generated by signal processing functions. Second, the
representation we choose for sensor data should facilitate the formulation of sensor
queries (data collection, correlation in time, and aggregates over time windows).

Note that time plays a central role. Possibly, signal processing functions return
output repeatedly over time, and each output has a time-stamp. In addition,
monitoring queries introduce constraints on the sensor data time-stamps, e.g., Query 3
in Example 1 assumes that the abnormal temperatures are detected either
simultaneously or within a certain time interval. Aggregates over time windows, such
as Query 4 and 5, reference time explicitly.

Given these constraints, we represent sensor data as time series. Our representation
of sensor time series is based on the sequence model introduced by Seshadri et al.
[19]. Informally, a sequence is defined as a 3-tuple containing a set of records R, a
countable totally ordered domain O (called ordering domain – the elements of the
ordering domain are referred to as positions) and an ordering of R by O. An ordering
of a set of records R by an ordering domain O is defined as a relation between O and
R, so that every record in R is associated with some position in O. Sequence operators
are n-ary mappings on sequences; they operate on a given number of input sequences
producing a unique output sequence. All sequence operators can be composed.
Sequence operators include: select, project, compose (natural join on the position),
and aggregates over a set of positions. Because of space limitation, we refer the reader
to [4] for a formal definition of sensor time series
We represent sensor data as a time series with the following properties:
1. The set of records corresponds to the outputs of a signal processing function over

time.
2. The ordering domain is a discrete time scale, i.e. a set of time quantum; to each

time quantum corresponds a position. In the rest of the paper, we use natural
numbers as the time-series ordering domain. Each natural number represents the
number of time units elapsed between a given origin and any (discrete) point in
time. We assume that clocks are synchronized and thus all sensors share the same
time scale.

3. All outputs of the signal processing function that are generated during a time
quantum are associated to the same position p. Note that, in case a sensor does not
generate events during the time quantum associated to a position, the Null record is
associated to that position.

4. Whenever a signal processing function produces an output, the base sequence is
updated at the position corresponding to the production time. Updates to sensor
time series thus occur in increasing position order.

46

2.2 Sensor Queries

Sensor queries involve stored data and sensor data, i.e. relations and sequences. We
define a sensor query as an acyclic graph of relational and sequence operators. The
inputs of a relational operator are base relations or the output of another relational
operator; the inputs of a sequence operator are base sequences or the output of another
sequence operator, i.e. relations are manipulated using relational operators and
sequences are manipulated using sequence operators. There are three exceptions to
this rule. Three operators allow combining relations and sequences: (a) the relational
projection operator can take a sequence as input and project out the position attribute
to obtain a relation, (b) a cross product operator can take as input a relation and a
sequence to produce a sequence and (c) an aggregate operator can take a sequence as
input and a grouping list that does not include the position attribute.

Sensor queries are long running. To each sensor query is associated a time interval
of the form [O, O + T] where O is the time at which it is submitted and T is the
number of time quantums (possibly 0) during which it is running.

During the span of a long-running query, relations and sensor sequences might be
updated. An update to a relation R can be an insert, a delete, or modifications of a
record in R. An update to a sensor sequence S is the insertion of a new record
associated to a position greater than or equal to all the undefined positions in S (see
Section 3.1.1). Concretely, each sensor inserts incrementally the set of records
produced by a signal processing function at the position corresponding to the
production time.

A sensor query defines a view that is persistent during its associated time interval.
This persistent view is maintained to reflect the updates on the sensor database. In
particular, the view is maintained to reflect the updates that are repeatedly performed
on sensor time series.

Jagadish et al. [13] showed that persistent views over relations and sequences
could be maintained incrementally without accessing the complete sequences, given
restrictions on the updates that are permitted on relations and sequences, and given
restrictions on the algebra used to compose queries. Informally, persistent views can
be maintained incrementally if updates occur in increasing position order and if the
algebra used to compose queries does not allow sequences to be combined using any
relational operators. Both conditions hold in our definition of a sensor database.

3 The COUGAR Sensor Database System

In this section, we discuss the representation of sensor data, as well as the formulation
and evaluation of sensor queries in the initial version of COUGAR. We discuss the
limitations of this system and the conclusions that we have drawn.

We have introduced in Section 2 a model of sensor database. We took a set of
design decisions when implementing this model in the COUGAR system. We
distinguish between the decisions we took concerning:
1. User representation: How are sensors and signal processing functions modeled in

the database schema? How are queries formulated?

47

2. Internal representation: How is sensor data represented within the database
components that perform query processing? How are sensor queries evaluated to
provide the semantics of long-running queries?

3.1 User Representation

In COUGAR, signal-processing functions are represented as Abstract Data Type
(ADT) functions. Today’s object-relational databases support Abstract Data Types
that provide controlled access to encapsulated data through a well-defined set of
functions [20]. We define a Sensor ADT for all sensors of a same type (e.g.,
temperature sensors, seismic sensors). The public interface of a Sensor ADT
corresponds to the specific signal-processing functions supported by a type of sensor.
An ADT object in the database corresponds to a physical sensor in the real world.

Signal-processing functions are modeled as scalar functions. Repeated outputs of
an active signal processing functions are not explicitly modeled as sequences but as
the result of successive executions of a scalar function during the span of a long-
running query. This decision induced some limitation. Indeed, as we will see below,
queries containing explicit time constraints (such as aggregates over time windows)
cannot be expressed.

Sensor queries are formulated in SQL with little modifications to the language. The
‘FROM’ clause of a sensor query includes a relation whose schema contains a sensor
ADT attribute (i.e., a collection of sensors). Expressions over sensor ADTs can be
included in the ‘SELECT’ or in the ‘WHERE’ clause of a sensor query.

The queries we introduced in Section 1 are formulated in COUGAR as follows.
The simplified schema of the sensor database contains one relation R(loc point, floor
int, s sensorNode), where loc is a point ADT that stores the coordinates of the sensor,
floor is the floor where the sensor is located in the data warehouse and sensorNode is
a Sensor ADT that supports the methods getTemp() and detectAlarmTemp(threshold),
where threshold is the threshold temperature above which abnormal temperatures are
returned. Both ADT functions return temperature represented as float.
• Query 1: “Return repeatedly the abnormal temperatures measured by all sensors”

SELECT R.s.detectAlarmTemp(100)
FROM R
WHERE $every();
The expression $every() is introduced as a syntactical construct to indicate that the
query is long-running.

• Query 2: “Every minute, return the temperature measured by all sensors on the
third floor”.
SELECT R.s.getTemp()
FROM R
WHERE R.floor = 3 AND $every(60);
The expression $every() takes as argument the time in seconds between successive
outputs of the sensor ADT functions in the query.

• Query3: “Generate a notification whenever two sensors within 5 yards of each
other measure simultaneously an abnormal temperature”.

48

SELECT R1s.detectAlarmTemp(100), R2.s. detectAlarmTemp (100)
FROM R R1, R R2
WHERE $SQRT($SQR(R1.loc.x – R2.loc.x) + $SQR(R1.loc.y – R2.loc.y)) < 5
 AND R1.s > R2.s AND $every();
This formulation assumes that the system incorporates an equality condition on the
time at which the temperatures are obtained from both sensors.

Query 4 and Query 5 cannot be expressed in our initial version of COUGAR because
aggregates over time windows are not supported.

In COUGAR, the time interval associated with long-running queries is the interval
between the instant the query is submitted and the instant the query is explicitly
stopped.

3.2 Internal Representation

Query processing takes place on a database front-end while signal-processing
functions are executed on the sensor nodes involved in the query. The query
execution engine on the database front-end includes a mechanism for interacting with
remote sensors. On each sensor a lightweight query execution engine is responsible
for executing signal processing functions and sending data back to the front-end.

In COUGAR, we assume that there are no modifications to the stored data during
the execution of a long-running query. Strict two-phase locking on the database front-
end ensures that this assumption is verified.

The initial version of COUGAR does not consider a long-running query as a
persistent view; the system only computes the incremental results that could be used
to maintain such a view. These incremental results are obtained by evaluating sensor
ADT functions repeatedly and by combining the outputs they produce over time with
stored data.

The execution of Sensor ADT functions is the central element of sensor queries
execution. In the rest of the section, we show why the traditional execution of ADT
functions (which is explained below) is inappropriate for sensor queries and we
present the mechanisms we have implemented in COUGAR to evaluate sensor ADT
functions.

Problems with the Traditional ADT Functions Execution
In most object-relational database systems, ADT functions are used to form
expressions together with constants and variables. When an expression containing an
ADT function is evaluated, a (local) function is called to obtain its return value. It is
assumed that this return value is readily available on-demand. This assumption does
not hold in a sensor database for the following reasons:
1. Scalar sensor ADT functions incur high latency due to their location or because

they are asynchronous;
2. When evaluating long-running queries, sensor ADT functions return multiple

outputs.
To illustrate these problems, let us consider Query 1 in our example. One possible
execution plan for Query 1 would be the following. For each temperature sensor in
the relation R, the scalar function detectAlarmTemp(100) is applied.

49

There is a serious flaw in this execution. First, the function detectAlarmTemp (100)
is asynchronous, i.e. it returns its output after an arbitrary amount of time. While the
system is requesting an abnormal temperature on the first sensor of the relation R, the
other temperature sensors have not been yet been contacted. It may very well be that
some temperature sensors could have detected temperatures greater than 100, while
the system is blocked waiting for the output of one particular function.

Second, during the span of a long-running query, detectAlarmTemp (100) might
return multiple outputs. The evaluation plan we presented scans relation R once and
thus does not respect the semantics of long running queries we have introduced in
Section 2.

Virtual Relations
To overcome the problems outlined in the previous paragraph, we introduced a
relational operator to model the execution of sensor ADT functions. This relational
operator is a variant of a join between the relation that contains the sensor ADT
attribute and the sensor ADT function represented in a tabular form. We call the
tabular representation of a function a virtual relation.

A virtual relation is a tabular representation of a method. A record in a virtual
relation (called a virtual record) contains the input arguments and the output argument
of the method it is associated with2. Such relations are called virtual because they are
not actually materialized, as opposed to base relations, which are defined in the
database schema.

If a method M takes m arguments, then the schema of its associated virtual relation
has m+3 attributes, where the first attribute corresponds to the unique identifier of a
device (i.e., the identifier of an actual device ADT object), attributes 2 to m+1
correspond to the input arguments of M, attribute m+2 corresponds to the output
value of M and attribute m+3 is a time stamp corresponding to the point in time at
which the output value is obtained. In our example Query 1, the virtual relation
VRdetectAlarmTemp is defined for the Sensor ADT function detectAlarmTemp().
Since this function takes one input arguments, the virtual relation has four attributes:
SensorId, Temp, Value, and TimeStamp, i.e., the identifier of the Sensor device that
produces the data SensorId, the input threshold temperature Temp, the Value of the
measured temperature and the associated TimeStamp.

We observe the following:
• A virtual relation is append-only: New records are appended to a virtual relation

when the associated signal processing function returns a result. Records in a virtual
relation are never updated or deleted.

• A virtual relation is naturally partitioned across all devices represented by the same
sensor ADT: A virtual relation is associated to a sensor ADT function, to each
sensors of these type is associated a fragment of the virtual relation. The virtual
relation is the union of all these fragments.

The latter observation has an interesting consequence: a device database is internally
represented as a distributed database. Virtual relations are partitioned across a set of
devices. Base relations are stored on the database front-end. Distributed query

2 We assume without loss of generality that a device function has exactly one return value; an

extension to the general case is straightforward.

50

processing techniques are not implemented in the initial version of COUGAR; their
design and integration is the main goal of COUGAR V2 that we are currently
implementing.

Query Execution Plan
Virtual relations appear in the query execution plan at the same level as base relations.
Base relations are accessed through (indexed) scans. Each virtual relation fragment is
accessed on sensors using a virtual scan. A virtual scan incorporates in the query
execution plan the propagation mechanism necessary to support long-running queries.

Our notion of virtual scan over a virtual relation fragment is similar to the
fetch_wait cursor over an active relation in the Alert database system [18]. A
fetch_wait cursor provides a blocking read behavior. This fetch_wait cursor returns
new records as they are inserted in the active relation and blocks when all records
have been returned. A classical cursor would just terminate when all records currently
in the relation have been returned.

The join between a base relation and a virtual relation is basically a nested loop
with a pipelined access to the virtual scans that encapsulate the execution of the
sensor ADT function. (Note that we make the simplifying assumption that arguments
to the sensor ADT functions are constants.) Indeed, the sensor ADT function is
applied with identical parameters on all sensors involved in the query. The algorithm
is presented below.

In: Base relation R, sensor ADT function f

Out: join between relation R and virtual relation associated to f

Initialize virtual scans for the virtual relation fragments
associated to f on all sensors involved in the query

FOREVER DO

 Get next output from the sensor virtual scan

 Find a matching sensor id in the base relation R

 If match is found then return record

ENDLOOP

The incremental results produced by a virtual join are directly transmitted to the
client, or they are pipelined to the root of the execution plan (as the outer child in a
nested loop join for instance3). Consequently, queries with relational aggregates or
‘ORDER BY’ clauses do not return an incremental result. Indeed, such queries
require an operator to accumulate all the results produced by its children. With such
operators no incremental results are produced before the query is stopped.

3 Note that queries with sensor ADT functions applied on more than one collection of sensors

require that the join between two virtual joins is a double-pipelined join.

51

3.3 Conclusions
Here are the conclusions that we have drawn from our experience with the initial
version of COUGAR:
1. Representing stored data as relations with an ADT attribute representing sensors

and sensor data as the output of ADT functions is a natural way of representing a
sensor database.

2. Virtual joins are an effective way of executing ADT functions that do not return a
value in a timely fashion (because they are often asynchronous, because they
generally incur high latency or because they return multiple values over time).

3. Representing all signal processing functions as scalar functions fails to capture the
ordering of sensor data in time. As a result, queries involving aggregates over time
windows or correlations are difficult to express. This problem has previously been
identified in the context of financial data [21].

4 Related Work

Two projects are representative of the efforts that are made to build wireless sensor
network infrastructures: The WINS project at UCLA [17] and the Smart Dust project
at UC Berkeley [14]. The model of sensor database that we introduce in Section 2 is
applicable to both types of sensor networks. The COUGAR system is implemented on
top of the WINS infrastructure.

The goals of the DataSpace project at Rutgers University are quite similar to the
goals of a sensor database system [9]. Imielinski et al. recognized the advantages of
the distributed approach over the warehousing approach for querying physical
devices. In a DataSpace, devices that encapsulate data can be queried, monitored and
controlled. Network primitives are developed to guarantee that only relevant devices
are contacted when a query is evaluated. We are currently integrating COUGAR with
similar networking primitives, i.e., the Declarative Routing Protocol developed at
MIT-LL [5], and the SCADDS diffusion-based routing developed at ISI [10]. Other
related projects include the TELEGRAPH project at UC Berkeley [1], which studies
adaptive query processing techniques, and the SAGRES project at the University of
Washington [11], which explores the use of data integration techniques in the context
of device networks.

The environment of a sensor network with computing power at each node
resembles a mobile computing environment [8]. Sensors differ from mobile hosts in
that sensors only serve external requests but do not initiate requests themselves. Also,
recent work on indexing moving objects, e.g. [16], is relevant in such environments.
The techniques proposed however assume a centralized warehousing approach.

Our definition of sensor queries bears similarities with the definition of continuous
queries [23]. Continuous queries are defined over append-only relations with time-
stamps. For each continuous query, an incremental query is defined to retrieve all
answers obtained in an interval of t seconds. The incremental query is issued
repeatedly, every t seconds, and the union of the answers it provides constitute the
answer to the continuous query. Instead of being used to maintain a persistent view,

52

incremental results are directly returned to users. The answers returned by the initial
prototype of COUGAR respect the continuous queries semantics.

Time series can be manipulated in object-relational systems such as Oracle [16] or
in array database systems such as KDB [13]. These systems do not support the
execution of long-running queries over sequences.

5 Conclusion

We believe that sensor database systems are a promising new field for database
research. We described a data model and long-running query semantics for sensor
database systems where stored data are represented as relations and sensor data are
represented as sequences. The version of the Cornell COUGAR system that we
presented is a first effort towards such a sensor database system. The second version
of COUGAR [4] improves on the initial prototype in that sequences are explicitly
represented. This allows for more expressive sensor queries. In particular, queries
containing aggregates over time windows can be expressed.

This first generation of the Cornell COUGAR systems demonstrated that the
application of database technology shows much promise for providing flexible and
scalable access to large collections of sensors. It also helped us identify a set of
challenging issues that we are addressing with our ongoing research:
• Due to the large scale of a sensor network, it is highly probable that some of the

sensors and some of the communication links will fail at some point during the
processing of a long-running query. We are studying how sensor database systems
can adjust to communication failures and return a more accurate answer at the cost
of increased response time and resource usage.

• Sensor Data are measurements not facts. Indeed, to each value produced by a
sensor is associated a probability that this value is correct. Often, sensor values
correspond to continuous distributions, e.g. a normally distributed probability with
a given mean and standard deviation. We are defining a data model and analogs of
the relational operators for representing and manipulating continuous distributions.

• Because of the large scale and dynamic nature of a sensor network, we cannot
assume that a centralized optimizer maintains global knowledge and thus precise
meta-information about the whole network. We are studying how to maintain
meta-data in a decentralized way and how to utilize this information to devise good
query plans.

Acknowledgements
We would like to thank Tobias Mayr and Raoul Bhoedjiang who helped debug earlier
versions of this paper. This paper benefited from interactions with the SensIT
community. In particular, Bill Kaiser provided valuable information concerning the
Sensoria WINS network. Tok Wee Hyong has implemented most of the sequence
ADT extension for COUGAR V2. Joe Hellerstein suggested the relevance of
sequences for sensor databases. This work is sponsored by the Defense Advanced
Research Projects Agency (DARPA) and Air Force Research Laboratory, Air Force
Material Command, USAF, under agreement number F-30602-99-0528.

53

References

1. Ron Avnur, Joseph M. Hellerstein: Eddies: Continuously Adaptive Query Processing.
SIGMOD Conference 2000: 261-272

2. Ph. Bonnet, P.Seshadri. Device Database Systems. Proceedings of the International
Conference on Data Engineering ICDE’99, San Diego, CA, March, 2000.

3. Ph.Bonnet, J.Gehrke, P.Seshadri. Querying the Physical World. IEEE personal
Communications. Special Issue “Networking the Physical World”. October 2000.

4. Ph.Bonnet, J.Gehrke, P.Seshadri. Towards Sensor Database Systems. Cornell CS
Technical Report TR2000-1819. October 2000

5. D.Coffin, D.Van Hook, S.McGarry, S.Kolek. Declarative AdHoc Sensor. SPIE
Integrated Command Environments. 2000.

6. D.Estrin, R.Govindan, J.Heidemann (Editors): Embedding the Internet. CACM 43(5)
(2000)

7. The Intel Computing Continuum Conference, San Francisco, May, 2000.
http://www.intel.com/intel/cccon/

8. Tomasz Imielinski, B. R. Badrinath: Data Management for Mobile Computing.
SIGMOD Record 22(1): 34-39 (1993)

9. Tomasz Imielinski, Samir Goel: DataSpace - Querying and Monitoring Deeply
Networked Collections in Physical Space. MobiDE 1999: 44-51

10. C.Intanagonwiwat, R.Govindan, D.Estrin. Directed Diffusion: A Scalable and Robust
Communication Paradigm for Sensor Networks. Mobicom'00.

11. Z. G. Ives, A. Y. Levy, J. Madhavan, R. Pottinger, S. Saroiu, I. Tatarinov, S. Betzler,
Q. Chen, E. Jaslikowska, J. Su, W. Tak and T.Yeung: Self-Organizing Data
Sharing Communities with SAGRES. SIGMOD Conference 2000: 582

12. Kx Systems Home Page: http://www.kx.com.
13. H. V. Jagadish, Inderpal Singh Mumick, Abraham Silberschatz: View Maintenance

Issues for the Chronicle Data Model. PODS 1995: 113-124
14. J. M. Kahn, R. H. Katz and K. S. J. Pister, "Mobile Networking for Smart Dust",

ACM/IEEE Intl. Conf. on Mobile Computing and Networking (MobiCom 99),
Seattle, WA, August 17-19, 1999

15. Oracle8™ Time Series Data Cartridge. 1998. http://www.oracle.com/
16. Dieter Pfoser, Christian S. Jensen, Yannis Theodoridis: Novel Approaches in Query

Processing for Moving Objects. VLDB 2000:
17. G.Pottie, W. Kaiser: Wireless Integrated Network Sensors (WINS): Principles and

Approach. CACM 43(5) (2000)
18. U. Schreier, H. Pirahesh, R. Agrawal, C. Mohan: Alert: An Architecture for

Transforming a Passive DBMS into an Active DBMS. VLDB 1991: 469-478
19. Praveen Seshadri, Miron Livny, Raghu Ramakrishnan: SEQ: A Model for Sequence

Databases. ICDE 1995: 232-239
20. P. Seshadri. Enhanced Abstract Data Types in Object-Relational Databases. VLDB

Journal 7(3): 130-140 (1998).
21. D.Shasha: Time Series in Finance: The Array Database Approach. 1998.

http://cs.nyu.edu/shasha/papers/jagtalk.html
22. D.Tennenhouse: Proactive Computing. CACM 43(5) (2000)

23. Douglas B. Terry, David Goldberg, David Nichols, Brian M. Oki: Continuous
Queries over Append-Only Databases. SIGMOD Conference 1992: 321-330

54

GADT: A Probability Space ADT
for Representing and Querying the Physical World

�

Anton Faradjian, Johannes Gehrke
Department of Computer Science

Cornell University�
tony,johannes � @cs.cornell.edu

Philippe Bonnet �
Datalogisk Institut

Københavns Universitet
bonnet@diku.dk

Abstract

Large sensor networks are being widely deployed
for measurement, detection, and monitoring applications.
Many of these applications involve database systems to
store and process data from the physical world. This data
has inherent measurement uncertainties that are properly
represented by continuous probability distribution functions
(pdf’s). We introduce a new object-relational data type, the
Gaussian ADT GADT, that models physical data as gaus-
sian pdf’s, and we show that existing index structures can
be used as fast access methods for GADT data. We also
present a measure-theoretic model of probabilistic data and
evaluate GADT in its light.

1 Introduction

Networks of radar, sonar, seismic, and thermal sensors
are being deployed widely for measurement, detection, and
monitoring applications. These sensor networks will cre-
ate a flood of observational data of unprecedented scale
[EGHK99]. Similarly, enormous quantities of physical data
are, and will continue to be, generated by astronomical sky
surveys [SKT � 00]. A large class of these applications rely
on database systems to store, filter, compare and aggregate
large volumes of physical data [BS00].

Inherent to data that result from a physical measure-
ment is uncertainty regarding the true value of the measured
quantity. This uncertainty can properly be described by
a continuous probability distribution function (��� �	�
��) over
the possible measurement values. For example, consider a
temperature sensor in your office that reports an estimate �

of the current temperature

; let this estimate be �
��������

�
This work was supported by DARPA under contract F30602-99-2-

0528, an IBM Faculty Development Award, and by gifts from Microsoft
and Intel.�

Work done while at Cornell University.

Fahrenheit (F). Given this measurement, do we believe that
the temperature in your office is exactly

�����
F? Assuming

that the error introduced by the sensor has a gaussian dis-
tribution with a known standard deviation of � � F, we can
compute the probability that the true temperature

lies in

the range �
�����
	 "! . In the context of a database application, a
user should be able to submit a query that retrieves all tem-
peratures whose true values lie in the range �
$#���
&%�! with a
given probability ' .

Note that we need to manage such uncertainties using
probability theory, and not using fuzzy theory. There is no
question here about fuzzy set membership or the definition
of vague terms such as “tall” or “hot.” Since the nature of
our problem is fundamentally probabilistic, fuzzy relational
models do not apply in our setting. [AR84, KF88, RM88].

In order to manage the uncertainty associated with phys-
ical data but at the same time take advantage of features of
a modern database system, we need a data model for repre-
senting continuous ��� �	�
�� ’s such as gaussians. Surprisingly,
none of the numerous probabilistic data models described in
the literature handles continuous ��� �	�
�� ’s—all models deal
with discrete ��� �	�
�� ’s [CP87, BGMP92, DS96].

In this paper, we develop a data model for continuous��� �	�
�� ’s. Our first contribution is GADT, a concrete abstract
datatype (ADT) for representing one-dimensional gaussian
distributions. GADT is simple and expressive. We show that
GADT is easy to implement as an extension to an existing
object-relational DBMS, and we outline how we can access
GADT data efficiently using indexing by linear constraint
(QBLC) [GRSY97]. As a proof of concept, we have car-
ried out a prototype implementation of GADT in the Cornell
Predator ORDBMS [Ses98].

Our second contribution is a study of the theoretical as-
pects of probability space ADT’s. Having started with the
datatype GADT, we lift our level of abstraction to a measure-
theoretic framework to reason about properties of datatypes
that represent continuous as well as discrete probability dis-
tribution functions. We introduce probability spaces and
events as the basic elements of any probabilistic data type.

55

goodelle
Text Box
Appendix C:

We show that equality raises an interesting challenge for
continuous distributions, and we introduce operations that
overcome this challenge. This conceptual study does not
only provide a framework for the future development of
probabilistic ADT’s, but also sheds light on several aspects
of our one-dimensional gaussian model. Thus our measure-
theoretic framework is not only an abstraction of given in-
stantiations of probabilistic ADTs, it allows us to gain in-
sights into the general functionality and methods that in-
stantiations of probabilistic ADTs should encompass and
what their semantics should be. The reader should therefore
understand this paper as a trail that starts with a concrete in-
stantiation, climbs to the abstract level, and then returns to
the concrete instantiation with some insights from the ab-
stract level.

The milestones along our trail are as follows. Section 2
introduces the gaussian ADT GADT and its methods. Sec-
tion 3 outlines techniques for query processing using GADT

data and queries. Section 4 studies the theoretical aspects
of probability space ADTs, and Section 5 discusses the in-
sights that our theoretical framework provides with respect
to GADT. We discuss related work in Section 6 and con-
clude in Section 7.

2 GADT: The Gaussian ADT

In this section, we introduce GADT, the gaussian ADT
with which we can represent physical measurements as
continuous gaussian ��� �	�
�� ’s. We first introduce gaussian��� �	�
�� ’s formally in Section 2.1. Section 2.2 introduces
GADT, and Section 2.3 introduces the methods that GADT

supports.

2.1 Preliminaries

A gaussian ��� �	�
�� has the form

����� ���	��
���
 �������� ��� ���	��� ���� %�� � (1)

The parameters � and � are the mean and standard devia-
tion of the ��� �	�
�� , respectively. The definite integral of ����� �
is denoted ��� � and gives the probability that the true value
of � lies in the interval of integration:

 ��� �!� � " �$# !
%��
 ��'&)(�+* � " �$# !-,&�/.102 ����� �!�	34
�5�3 � (2)

For 687:9 , we use ; � 6
 to denote =< � � � � >?6 � 6 !
 . It is related
to the well-known error function @BA	C � 6
 [Fel66, Vol. 1, Ch.
7]:

; � 6
D��
 �� E< � � � � >?6 � 6 !
 � @BA	CEF 6� %!G � 687:9 � (3)

The function ; has an inverse, H , defined on � 9 ��# ! by:

H � ; � 6
4
I��
 �� 6 � (4)

Both ; and H are monotonically increasing.

2.2 The GADT Model

A measurement that is subject to many small and ran-
dom errors is normally distributed and characterized by a
gaussian ��� �	�
�� A finite number of repetitions of a measure-
ment also results in a normal distribution [Tay82]. We de-
sire a data model that treats gaussians as first-class data val-
ues. GADT accomplishes this by defining a gaussian ADT:
an instance of the ADT corresponds to a gaussian ��� �	�
�� ,
and, in terms of physical data representation, consists sim-
ply of the two real numbers � and � . GADT instances
are by definition probabilistically independent of each other
so that the joint ��� �	�
�� of two gaussian instances is sim-
ply the product of their ��� �	�
�� ’s. Statistical dependence be-
tween measured quantities can be represented using higher-
dimensional gaussians; higher-dimensional gaussians are a
topic for future research.

In order to evaluate the probability that a true physical
value lies in a given interval, we need an interval ADT. The
interval ADT represents intervals on the real line; it is an-
cillary to GADT. Due to space constraints, and for ease of
explanation, we do not define the interval ADT formally,
and we focus our attention on the case of single intervals, as
opposed to unions of disconnected intervals.

We now use a simple denotational semantics to define
GADT methods. The semantics make use of the following
basic value mappings, which are generalized in Section 4.
Given a GADT instance J having mean � and standard devi-
ation � , we define the gaussian mapping K � � J ! ! by

K � � J ! ! ��
 �� ��� � � (5)

Similarly, given an instance L of the interval ADT represent-
ing the real interval � " �$# ! , we define the interval mappingM � � L ! ! by M � � L ! ! ��
 �� � " �$# ! � (6)

Finally, given a real instance � representing the real numberN
, we define the real mapping O � � � ! ! by

O � � � ! ! ��
 ��'N � (7)

We use these three instance mappings to define the GADT

methods PBA�Q�R , SUT V , and WXQ�YZC , and we show how these
methods can be used to pose queries involving data with
continuous ��� �	�
�� ’s.

56

2.3 GADT Methods

2.3.1 Selections with PBA�Q�R
Computing the probability that a value lies inside an interval
is the most fundamental GADT operation. The PBA�Q�R ADT
method provides this feature: It takes as argument an inter-
val instance L and returns the probability that the true value
of the measurement represented by a GADT instance J lies
in
M � � L ! ! : O � � J � PBA�Q�R � L
 ! ! ��
 �� K � � J ! ! � M � � L ! !
 � (8)PBA�Q�R is useful for obtaining the likelihood of events. As

an example, let � � be a relation having the GADT-valued
attribute ������� , which stores a temperature measurement
obtained from a temperature sensor. Using PBA�Q�R , we can
pose queries such as: Retrieve from � � all tuples whose������� is within 0.5 degrees of 68 degrees with at least 60%
probability:

SELECT *
FROM � �
WHERE � � ��������� � PBA�Q�R � � �
	 � � � ��� � � !
 7 9 � �

Another example is as follows: Retrieve from � � all tuples
whose ������� is at least 75 degrees with probability at most
90%:

SELECT *
FROM � �
WHERE � � ��������� � PBA�Q�R � � 	 � �
� !
�� 9 � �

2.3.2 Comparisons with SUT V
Another important operation is to compute the difference
between two gaussians [Tay82]. Let J ��� J be two GADT

instances representing uncertain scalar quantities � � and� , respectively, and let K � � J � ! ! � �����$� ��� �	� �
 and K � � J "! ! ���� � � � � �	�
 . Because J � and J are probabilistically inde-
pendent, the ��� �	�
�� of � � > � is a gaussian ������� ��� , where� � � � � > � �� and (9)

� � � � � ��� � � (10)

We use DIFF to denote the difference between two gaus-
sians:

DIFF � ���$� ��� � � � � � �
 ��
 �� ���!� ��� �
Note that DIFF is not symmetric in its arguments. The SUT V
method computes DIFF:

K � � J � � SUT V � J
 ! ! ��
 �� DIFF � K � � J � ! ! � K � � J "! !
 � (11)

When used with PBA�Q�R , SUT V allows us to compare J � and J
by computing the probability that "�� � � > � � # :&)("�� � � > � � #Z,&� � J � � SUT V � J
4
 � PBA�Q�R � � " �$# !
 � (12)

As an example, let � � and � be two relations each having
the GADT-valued attribute ������� , which stores a tempera-
ture. Consider the following query: Join � � and � on the
condition that � � ��������� is within 0.1 degrees of � ���������
with probability at least 75%:

SELECT *
FROM � ��� �
WHERE � � � ��������� � SUT V � � ���������
4
 �PBA�Q�R � � >?9 � #�� 9 � # !
 7:9 � 	 �

2.3.3 Comparisons with WXQ�YZC
In the context of astronomical data, C. Page shows that it is
useful to compare gaussians by testing whether their con-
fidence intervals overlap [Pag96]. Page calls this kind of
join a “fuzzy join”1 and recommends that it be implemented
in all astronomical DBMS’s. GADT provides the methodWXQ�YZC to do this. Given a GADT instance J and a probability' * � 9 ��# ! , J �-WXQ�YZC � '
 evaluates to the

9�9 ' % confidence
interval. Specifically, if K � � J ! !	� ����� � , thenM � � J �-WXQ�YZC � '
 ! ! ��
 �� �Z� > ��� H � '
 � � � ��� H � '
 ! (13)

(recall the definition of H from Equation 4). Let � ��� � be
two relations each having the GADT-valued attribute

&! �"
,

which stores the positions of stars along a certain dimen-
sion. Then we can ask the following query: Join � ��� � on
the condition that the 30% confidence interval of � � � &! �"
intersects the 35% confidence interval of � � &! �" :2

SELECT *
FROM � ��� �
WHERE � � � &! �" �-WXQ�YZC � 9 � #
%$� � &! �" �-WXQ�YZC � 9 � #��
�&�('

2.4 Implementation

As a proof of concept, we performed a prototype im-
plemention of GADT as an extension to the Cornell Preda-
tor object-relational DBMS [SP97]. We defined new ab-
stract data types (ADTs) for gaussians and for intervals.
We implemented the PBA�Q�R and WXQ�YZC methods of GADT.
The computation of probabilities in PBA�Q�R relies on an ap-
proximation of ; [FGB01]. An alternative is to rely on a
pre-packaged implementation of ; , such as those found in
Mathematica, Matlab, or the GNU C Compiler. The inter-
val ADT is used to express ranges and the results of calls to
the WXQ�YZC method. In order to implement the Page join (in
Section 2.3.3) we implemented a simple Intersect method
that computes the intersection of two intervals. The gaus-
sian and interval ADTs extend Predator’s type subsystem;

1Arguably a misnomer, since it involves no fuzzy set theory.
2The interval ADT is assumed to provide a method to compute inter-

sections of intervals. We use) as informal notation for that method.

57

they do not rely on any features particular to this system
and thus can be implemented in any ORDBMS.

3 Indexing GADT Relations

When dealing with large volumes of GADT data, queries
cannot be efficiently processed by naively scanning rela-
tions; we need efficient access methods. Fast access to
GADT data can be achieved by translating GADT queries
into queries by linear constraints (QBLC). Goldstein et
al. [GRSY97] and Agarwal et al. [AAE98] have recently
shown that QBLC can be processed efficiently using stan-
dard indexing structures such as the R-tree.

Let J be a GADT instance with K � � J ! ! � ��� � . Then J
is logically equivalent to the pair � � � �
 , and any condition
imposed on J is equivalent to a constraint on � � � �
 . If the
condition is given by a boolean predicate

#
then we can vi-

sualize all instances satisfying
#

as a region � in the � > �
plane (a subset of �����	�). We call � the valid region of#
. We call any superset of � a safe region for

#
. A sim-

ple procedure for GADT query processing is the following
two-stage process:

1. Compute a safe region that is expressible as a set of
linear constraints; then

2. Use the constraints as input to a QBLC indexing
engine such as the R-tree variant of Goldstein et
al. [GRSY97].

Examples of safe region computation follow in the remain-
der of this section. More general questions of query pro-
cessing and optimization for GADT are beyond the scope of
this paper and await future research.

3.1 Safe regions for PBA�Q�R
Here we show how to process efficiently a selection on

the predicate � � " � PBA�Q�R ����
 7 ' � (14)

where � is the interval � � � � � � ! . The adaptation of the
procedure to other kinds of predicates is straightforward.
Recall from Section 2 that ; and H are related to the well-
known error function.

3.1.1 Semi-infinite intervals

Suppose first that � is a semi-infinite interval. Without loss
of generality, say � � 9 and � � �

. We distinguish two
cases: ' 7:9 � � and ' �:9 � � .

Case 1: ' 7 9 � � . By the symmetry of gaussians, we
must have �D7 9 . Then

 ��� �!� � 9 �
� !
 � #
% � # � ; � �	� �
4
 �

Figure 1. Valid region for � � � 9 �
� ! � '+7 9 � # .

Figure 2. Valid region for � � � 9 �
� ! � '+7 9 � 	 .
so Inequality 14 is equivalent to

% ' � # � ; � �	� �
 �
Since H �	��
 is a monotonically increasing function of � , this
last inequality is equivalent to

� 7 ���ZH � % ' > #
 � (15)

Case 2: ' � 9 � � . Reasoning similarly to Case 1, we
obtain � 7/> ���ZH � # > % '
 � (16)

Inequalities 15 and 16 are linear constraints that define ex-
actly the valid region for the atomic predicate of Inequality
14 for the cases '%7 9 � � and ' � 9 � � , respectively. Exam-
ples are shown in Figures 1 and 2.

58

3.1.2 Finite intervals

Suppose, without loss of generality, that � � � >�� � � ! for
some � 7 9 . We can again distinguish the two cases' 7 9 � � and ' � 9 � � . It turns out that they too give rise
to qualitatively different valid regions. But for finite inter-
vals, the valid regions are not given by linear constraints.
Consider, for example, the case 'D7/9 � � . In order for ��� �
to lie in the valid region, � must lie in the open interval� >�� � �
 . Inequality 14 is then equivalent to

; F � � � � �� G � ; F � � � >��� G 7 % '��
Because H �	��
 is a nonlinear function of � , we cannot obtain
a linear constraint involving � and � by applying H to both
sides of the last inequality, as we did above. Figures 3 and
4, which show plots of valid regions for ' � 9 � # and ' �9 � 	 , illustrate that the valid regions are indeed nonlinear.
Observe, however, that for any ' the valid region is enclosed
by a bounding box given by the four linear constraints

� 7/>���� � � � ��� � � 7:9 ���	� � � � �
� � (17)

The parameters � � and � � are functions of ' . We obtain� � by noting that, for fixed � , ��� � � � >�� � � !
 is maximum
at � = 0. This follows from the symmetry of ����� � , and is
illustrated in Figures 3 and 4. The parameter � � is therefore
defined by the equation

 E< � �	��� � >�� � � !
 � ; � � � �
�
 � ' � ' * � 9 ��# ! �
which is equivalent to

�
� � �H � '
 � (18)

As for � � , we distinguish the two cases ' 7 9 � � and' � 9 � � . When ' 7 9 � � , � � is easily seen to be � itself.
When ' � 9 � � , however, the situation becomes more in-
teresting. Consider, without loss of generality, a gaussian ��� � with �
��� . In the limit both of very large and of
very small � , we have ��� �!� � >�� � � !
 � 9 . There is there-
fore a unique value of � , which we denote ������� , and which
is a function of � and � , that maximizes ��� �!� � >�� � � !
 .
Formally, �
����� is defined by���� � ��� �!� � >�� � � !
�� ��� ����� � 9 � � �!�"�
 �
whose solution is

�
����� �$#%%& % ���' �)(� ��*� �
*�+ � (19)

Figure 3. Valid region for � � � >?9 � � � 9 � � ! � '/79 � # .
The maximum of ��� �!� � >�� � � !
 , a function of � and � , is
denoted ,*����� � �
 :

 * ����� � �
 ��
 �� ��� ����� �� � >�� � � !

� #

%
� ;�F � � ��
����� G >D;�F � >���
����� G �

� #
%
� ;�F�- .0/ �21 ./ G> ;�F�- .0/ > 1 ./ G � �

where

/ ��
 �� �� � . ��
 �� ' ��354 / � #/+> #76 �
There are infinitely many values of � which are so large
that no value of � can satisfy Inequality 14. Such � sat-
isfy ,*����� � �
 � ' . But, in the upper halfplane 8 , there
is clearly a unique � that gives 9*����� � �
 � ' . This is � � .
Formally, * ����� � ���
 � '�� (20)

To the best of our knowledge, Equation 20 does not admit an
analytical (closed-form) solution for � � . The problem can
be recast as that of finding the root (zero) of the function: � /
���
 �� ,*����� � � �
 > ' . The function

:
is very shallow for

large / , however, which suggests that a root-finding algo-
rithm (such as a variant of Newton’s method) will struggle
to find a good solution if ' is small. In other words, the
problem is ill-conditioned in that regime. A better solution
is simply to tabulate a few values of 9*����� � �
 and to use

59

Figure 4. Valid region for � � � >?9 � � � 9 � � ! � '/79 � 	 .
the resulting table to look up a conservative estimate of � � .
The conservatism introduced decreases with increasing ta-
ble size, but the table need not be very large; a few extra
false positives would only negligibly impair performance.
To improve on this scheme, we can interpolate the tabulated
values using, for example, a multi-dimensional cubic spline.

3.2 Joins using SUT V
The following query can be processed using index nested

loops (INL) where the index is used to probe the inner rela-
tion � :

SELECT *
FROM � � �
WHERE � � � " � SUT V � � � #
4
 � PBA�Q�R � � >�� � � !
 7 ' .

Let 3 and
"

be tuples of � and � such that 3 � " is the gaus-
sian �����Z� ��� and

" � # the gaussian ��� � � � � , respectively. Then� � " � SUT V � � � #
 corresponds to the gaussian ��� � ������� ��� ,
from Equations 9 and 10. The results of Section 3.1.2 can
thus be used with ��� as the gaussian in question. That is,
Equations 17, 18, and 20, apply with the substitutions

��� � 2 > � 0 � ��� � � 2 � � 0
which implies

� 0 � - � � �
 > � 2 �
Since � 2 belongs to the outer tuple, it is a constant with
respect to the inner index probe, and the last constraint is
therefore linear in � 0 .

3.3 Safe regions for WXQ�YZC
The test for confidence overlap also reduces to lin-

ear constraints on � and � . Let � � � ���$� ��� � � � � � � � � be two gaussians. Suppose we wish to test whether
the 	 � confidence-interval

 �
of � � overlaps with the 	

confidence-interval

of � . For convenience, put

 � �

� � ��� � � ! and

 &� � � � � ! . Then it is easy to show that:

� � � � � >%H � 	 �
 � � � � � � � � � H � 	 �
 � � �
� � � >%H � 	
 � �� � � � � H � 	
 � �

The condition for overlap is � � � � �� � � � � , which
is equivalent to � � � � � H � 	 �
 � � (21)� � 7 � >%H � 	 �
 � � (22)

If we view � as fixed, Equation 21 and Equation 22 are
linear constraints involving � � and � � , and the valid region
is a curtailed cone.

4 Probability Space ADTs

Having presented an ADT for gaussian data, we now be-
gin to explore a more general theory of probabilistic data
in the ADT context. The goal is to define a framework
(concepts, operations, ADT methods) that is independent
of any particular ��� �	�
�� , so that we would not need to un-
dertake a separate study for data whose uncertainty is given
by other distributions, for example, a Gamma distribution.
The model we present is not only ��� �	�
�� -agnostic, but also
subsumes both continuous and discrete ��� �	�
�� ’s under one
general framework. To accomplish this goal, our model
uses the language of measure theory.3 In what follows,
we use the term probability space ADT (PSADT) to refer
to any datatype that aims to model probabilistic data using
the ADT approach; the gaussian ADT GADT is an example
of such a PSADT.

4.1 Spaces and Events

Let � be a database relation with an attribute " . Be-
fore attribute " can be typed as probabilistic and populated
with PSADT instances, we must declare the sample set

in which may lie the true values of the quantities repre-
sented by those instances. This is analogous to specifying
the domain of a regular attribute. Once
 is specified, a
PSADT instance � can then be modeled as a probability
measure on the measurable space �
 �����
 , where

���
is a

3We assume the reader is already familiar with the basics of measure
theory. See the books by Bartle [Bar95] or Billingsley [Bil95] for an intro-
duction.

60

suitably chosen � -algebra of subsets of
 . We call a mea-
surable set � * ��� an event, we call the measurable space�
 �����
 a sample space, and we call the triple �
 ����� � �
 a
probability space. The domain of attribute " is thus the set
of all measures on the sample space �
 �����
 . The density
or Radon-Nikodym derivative of a probability measure with
respect to some underlying measure on �
 ��� �
 is called a
probability density function or probability distribution func-
tion, and is abbreviated “ ��� �	�
�� ”

As an example, if attribute " is to contain PSADT in-
stances that represent uncertain integer data, then the do-
main of " is the set of all probability measures on the sam-
ple space ��� � %��
 , where � denotes the set of integers. In
this example, the probability measures corresponding to
PSADT instances will be discrete: the ��� �	�
�� ’s are with re-
spect to the well-known counting measure [Bar95]. GADT,
on the other hand, deals with continuous probability mea-
sures (see Section 5). Both examples fit neatly into the
PSADT framework.

We assume that the DBMS supports the abstraction of a
set, and we refer to it as the event ADT. It is ancillary to
the PSADT, and should support basic set operations such
as union, intersection, etc. In GADT the event ADT repre-
sented intervals over the real line. We need to generalize
Equations 5 and 6 to accomodate the probability space ab-
straction. Given a PSADT instance J representing a measure
� on a sample space �
 �����
 , we define the probability
measure mapping K � � J ! ! by

K � � J ! ! ��
 �� � � (23)

Given an instance L of the event ADT representing an event
� * ��� , we define the event mapping

M � � L ! ! byM � � L ! ! ��
 �� � � (24)

Unless stated otherwise, we assume throughout this sec-
tion that the sample space is �
 �����
 . We can now define
PSADT methods.

4.2 Event probabilities

The most fundamental operation we can perform with
probability spaces is to evaluate the probability assigned by
a measure to an event. Let J be a PSADT instance withK � � J ! !	� � . Let L be an event instance with

M � � L ! !	� � . Then
the probability of � under � is given by&)(� ,&� � � �
 �
Accordingly, the most basic method of a PSADT is PBA�Q�R ,
which takes an event instance as argument and computes its
probability under a PSADT instance. Formally,

O � � J � PBA�Q�R � L
 ! ! ��
 �� K � � J ! ! � M � � L ! !
 � M � � L ! ! * ��� � (25)

4.3 Conditional measures

Let J be a PSADT instance with K � � J ! ! � � , and let L be
an event instance with

M � � L ! !	���
such that � � �
 � 9 . The

conditional probability measure ��� gives the conditional
probability of an event � , given the event

�
:

�	� � �
 ��
 �� � � � $ �

� � �
 ��
 � * ��� � (26)

The conditional measure can be used for updating: if
�

is
new information then ��� represents the updated probabil-
ity measure. The PSADT method WXQ�Y
� computes condi-
tional measures:

K � � J �-WXQ�Y
� � L
 ! ! ��
 �� K � � J ! !���� � ��� � � (27)

4.4 Marginalization

Let the sample set
 consist of the (ordered) cross prod-
uct
 � � � � � �
�� . We can project out certain dimen-
sions, obtaining a marginal measure. Let � be a subset of(�#�� ����� ��� , . Without loss of generality, let � � (�#�� ����� ��� ,
with

� � �
. Let � be a measure. Then the projection of �

on � is denoted
���� and defined as� �� � �
%��
 �� � �
 � � � � � ��
�� �	�
 � (28)

 �!
�� � � � � � � ��
���"�� # ��
 � � � � � ��
�� �	� * ��� �
The PSADT method PBA�Q%$ computes projections: given a
PSADT instance J , we have4

K � � J � PBA�Q%$ � �
 ! ! ��
 ��'� �& � � ' � � � (29)

4.5 Comparisons

PSADT must provide a way to compare instances. Such
comparisons would be at the heart of natural joins, for ex-
ample. It turns out that, if we desire a model that treats
discrete and continuous measures on the same footing, then
the most basic and familiar kind of comparison, equality,
needs to be reexamined.

4.5.1 Similarity: A Generalization of Equality

Suppose � � � � are two uncertain quantities that are known
to lie in
 . Let � � �
 � � � ���
4
 be the product sample

space, where � � ���
 ��
 �� (� � �	� � � � � � * ��� , , and
let � be a joint probability measure on � for � � and � .
The following discussion applies in either of the following
two situations:

4For simplicity, we do without a “set mapping” that maps an instance of
a set to the set it represents. Hence (appears on both sides of Equation 29.

61

� There are PSADT instances J ��� J such that � is the
product measure � � K � � J � ! ! �8K � � J ! ! .5

� There is a single instance J such that � � K � � J ! ! . (This
allows for the possibility of non-factorizable product
measures, i.e., attributes that are not probabilistically
independent.)

We wish to compute the probability
&)(� � � � �, that� � and � are equal. We might proceed as follows. Let���

be the equality relation

� ��
 �� (�	� ��� �
B*
 � � � � � �,
(and assume that

� * � � ���
). Then the probability that
the values of � � and � are equal is simply&)(� � � � �, ��
 �� &)(�	� ��� �
B* � , � � � �
 � (30)

The problem with this approach is that it works when �
is discrete but not when it is continuous: in the latter case
� � �
 is generally zero. This is just a multi-dimensional
analogue of the familiar fact that, given a continuous ��� �	�
��
on � , there is zero probability that the true value equals any
one real number.

The natural solution is to generalize the notion of equal-
ity, by replacing

�
with a larger relation � �

. � is the

set of all pairs �	� � � �
 such that � � and � are considered to
be similar to one another, in whatever sense is appropriate
to the application at hand. We require that � be reflexive,
symmetric, measurable (i.e., � * � � ���
), and a superset
of

�
. We do not require that � be transitive. We call such

a relation � a similarity event. It is a relation on
 and an
event in

. The probability of equality in Equation 30 then

becomes a probability of similarity under � :&)(� � � � �, � � � �
 � (31)

As an example of a similarity relation, suppose
 is a
metric space with metric 5 .6 Let �+*
 . Then the neighbor-
hood of radius � centered on � is denoted by ��� �	��
 and de-

fined by ��� �	��
?��
 �� (
	 *
 � 5 �	� ��	
�� � , . Let ��

 � �
be a function, called a radius function. Let

��� ��
 �� (�	� ��	
B*
 � 	 * � � � � � �	��
�� � * � � � � � � 	
 ,
(32)

be a relation on
 . For reasonable choices of the � -algebra���
, ��� will be a measurable set and thus will be a similarity

event. We call it metric similarity under the radius function
� . The simplest radius function is constant:

��� * � ��
 �+*
 � � �	��
 � � � (33)

5The � notation refers to the product measure; as always, we assume���
and

���
are probabilistically independent.

6Recall that a set � is a metric space if there is a function ��� �"!#
, called a metric on � , satisfying: �%$ &(')&+*-,/.10+&324� ; �%$ &('�5%*6,�%$ 57'�&+*80+&('�5-29� ; and �%$ &(';:<*>=?�%$ &('�5%*A@B�%$ 57';:<*80+&('�57';:C29� .

We can obtain a more sophisticated radius function if the
metric space
 is also a norm space, that is, a vector space
with an associated norm D �EDF

 � � . The norm in-

duces a metric 5>G�H GZ�	� ��	
 ��
 �� D � > 	 D �
 � ��	 *
 . Now
let . * � be a small positive real number. Then the radius

function ��I �	��
 ��
 �� .JD � D gives rise to a metric similarity
���1K (substitute ��I for � in Equation 32). This similarity
event judges two quantities (vectors) to be similar if their
difference is small compared to their norms.

Choosing a similarity relation involves a degree of ar-
bitrariness and subjectivity. This is not surprising. A cer-
tain amount of subjectivity should be involved in decid-
ing whether two real-valued attribute values are equal, even
when there is no uncertainty associated with them. Is the
difference between

#
and

� # 9 �>L so significant as to make
the numbers unequal? Only the user can decide the answer,
and the verdict will depend on the situation at hand. Users
therefore rely on similarity relations even when the data are
certain. The only additional restriction imposed in the pres-
ence of uncertainty is that the similarity relations be mea-
surable.

4.5.2 Total Variation

Probability measures can be compared using the total vari-
ation distance (TVD). The TVD between the two measures
� ��� � is defined as half the measure assigned to the en-
tire sample set
 by the total variation of their difference
[Bar95]:

TVD � � ��� �
 � #
% � � � > � � �

 �

TVD is symmetric in its arguments. It is used to quantify the
difference between � � and � as measures. An example
of such a use can be found in Barbará et al. [BGMP92]. In
some cases it is natural to interpret a small TVD as indicating
a high probability of equality of the underlying data values.
This is especially true in the case of physical measurement,
where the ��� �	�
�� ’s are gaussian and where their expected
values are interpreted as best estimates of measurements.
The TVD is also appealing because it is a metric and thus
renders the vector space of measures a metric space.

The PSADT method �-M�S computes total variations:

O � � J ���-M�S � N�
 ! ! ��
 �� TVD � K � � J ! ! � K � � N ! !
 �
4.5.3 Confidence overlap

Probability measures often have canonical choices of confi-
dence sets. For example, the interval � > #���# ! is the 68% con-
fidence interval of the gaussian =< � � . We use CONF to de-
note this mapping, as in CONF � ��� � � 9 � ���
 � � ��>$� � � � � ! .
The notion of confidence gives rise to the following com-
parison. Let J ��� J be PSADT instances with K � � J � ! ! � � �

8

62

and K � � J "! ! � � . Given ' ��� ' * � 9 ��# ! , we say � � and
� are confidence-equal if their respective confidence sets
intersect:

CONF � � ��� ' �
 $ CONF � � � '
 &� ' �
Informally, for smaller ' � and ' , confidence-equality im-
plies that the true values are “closer” to one another. As
mentioned above, this is the comparison that underlies the
“fuzzy join” proposed by Page [Pag96]. It is useful, for ex-
ample, when joining astronomical tables based on the posi-
tions of stars. We emphasize that CONF is not defined for ar-
bitrary probability measures, but usually only for measures
with parametric ��� �	�
�� ’s.

The PSADT method WXQ�YZC computes confidence sets:M � � J�� WXQ�YZC � '
 ! ! ��
 �� CONF � K � � J ! ! � O � � ' ! !
 � (34)

5 GADT revisited

We now demonstrate that GADT is an instance of the
foregoing model: it is a PSADT that represents gaussian��� �	�
�� ’s with respect to the Lebesgue measure

�
on the real

line. Specifically, if � is the Borel � -algebra on � , then
the domain of a GADT attribute is the set of all measures on
the sample space � � � �
 conforming to the following two
restrictions:

1. Only intervallic events are supported. Compare Equa-
tion 6 with Equation 24.

2. All ��� �	�
�� ’s are with respect to
�

and are given by
Equation 1.

As Section 2 shows, GADT is useful in spite of restriction
1. That is, we can pose many interesting queries without
needing to take unions and intersections of intervals. How-
ever, restriction 2 gives rise to at least two complications.
The first is the following complication with WXQ�Y
� . Given
an instance J such that K � � J ! !�� ��� � , and given a condition-
ing interval L , the instance N�� J �-WXQ�Y
� � L
 would store L
in its state, along with � and � , and would implement PBA�Q�R
using Equation 26. The problem is that K � � N ! ! is no longer
gaussian, and, for example, the indexing techniques given
in Section 3 would no longer apply. One solution is to use N
only as an intermediate result and to forbid its being stored
in a relation. This is clearly a disadvantage if we wish to useWXQ�Y
� to update the database. Restriction 2 also gives rise
to a second complication that we deal with in Section 5.1.

GADT provides two ways to compare values: WXQ�YZC andSUT V . WXQ�YZC is obviously the same ADT method as that dis-
cussed in Section 4.5.3 (compare Equation 13 with Equa-
tion 34). SUT V can be understood as a change of variables
followed by an integration [Tay82]. Referring to Equa-
tion 12, if � � K � � � J � � SUT V � J
4
 ! ! , then � � � > � � � !
 corre-
sponds to the probability assigned by the joint ��� �	�
���� to

the set �	� � (�	� ��	
�* �
 � � > 	 � � � ,
. In other words,

�	� is a similarity event, and SUT V is used to implement met-
ric similarity (Equation 33). For example, the query in Sec-
tion 2.3.2 uses metric similarity with radius

� � 9 � # .
Thus, GADT implements the PSADT notions of event, � -

algebra, probability, comparison, and similarity, and it en-
dows each of these with semantics specific to gaussians. It
is an instance of a PSADT.

5.1 On the possibility of arithmetic operations

Having defined SUT V , a method which computes the dif-
ference between two uncertain quantities, the reader may
well ask if it is possible to define a method that computes
the sum, or the product, or the quotient, or even an arbitrary
scalar function of uncertain quantities. This would amount
to an arithemtic of uncertain quantities and would provide
a way to propagate uncertainties from simple PSADT in-
stances to compound PSADT instances. It would also en-
able us to manipulate uncertain data as naturally as if they
were simple numbers.

There is some hope of achieving such an arithmetic
in GADT. To illustrate, let

 � � � � be an

�
-ary

scalar function, and let � ��� ����� � � � be uncertain quantities
with gaussian ��� �	�
�� ’s �����$� ��� � ����� � ������� �
� , respectively. It
is a fact that, if � � is small compared to ��� for all

� *(�#�� ����� ��� , , then
 �	� ��� ����� � � �
 is normally distributed with��� �	�
�� �����Z� ��� [Tay82], where7

��� �
 � � ��� ����� � � �
 � �	� � (35)

��� � #%%& ��
� � � 3 � �8F �
� � � G � � ��� � � � � � ��� � � ���$� � � � � ����� 6

�

When
 �	� � � �
 � � ��� � , Equation 35 is exact regardless
of the size of � � � � � and � � � [Tay82]. But for general

the best we can hope for is accuracy to first-order in � � � � � .
Such an arithmetic extension to GADT is therefore useful
only in applications that do not require the exact compu-
tation of probabilities. This also suggests that the correct��� �	�
�� for
 is not gaussian, so that GADT boundaries have
already been crossed (restriction 2 in Section 5). Such com-
plications are manageable, however, and we see that arith-
metic for gaussians is feasible, but only because gaussians
have many special properties. Thus, although we could try
to generalize our attempts at arithmetic by defining arith-
metic methods for non-gaussian ��� �	�
�� ’s, there is probably
no way to implement them, because neat formulas such as
Equation 35 probably do not exist for those ��� �	�
�� ’s. In con-
clusion, there is hope that arithmetic can work with GADT,
but only because it is special. Whether arithmetic can also
work with a general PSADT is a matter for future research.

7These formulae are used in scientific data analysis to propagate mea-
surement error.

63

6 Related Work

Probabilistic data models (PDM’s) have been investigated
extensively in the literature, but to the best of our knowledge
all of the previous models support only discrete ��� �	�
�� ’s.
The beginnings of the field can be viewed as extensions of
early work on data incompleteness [Lip79, IL84, AKG99].

Wong treats data values as random variables, and regards
query processing on uncertain data as a matter of statistical
inference [Won82]; his paper has strong connections to the
ideas of Lipski [Lip79]. The PDM’s of Cavallo and Pittarelli
extend each record by a probability stamp such that the sum
of all probability stamps over a relation equals one; thus a
relation directly encodes a probability distribution [CP87,
Pit94].

Lakshmanan and Sadri include probabilities into the
rule system of a deductive database through an algebra of
confidence-intervals and a probabilistic calculus [LS94].
They also provide results on soundness, completeness, ter-
mination, and complexity of their model. Lakshmanan et
al. give a probablistic relational model that aims for maxi-
mum flexibility by supporting, multiple strategies for com-
bining basic events into complex events [LLRS97].

There is also a considerable body of work on fuzzy rela-
tions [AR84, KF88, RM88]. A number of authors have al-
ready observed, however, that the fuzzy approach to uncer-
tainty in data is signficantly different from the probabilis-
tic approach [BGMP92, DS96, LLRS97]. Generally, fuzzy
logic is not concerned with uncertainty, but with compen-
sating for the lack of expressivity in a language.

The work of Barbará et al. has been particularly influ-
ential for us [BGMP92]. Their model represents a discrete
probability distribution as a first-class value, in the form of a
nested relation. Dey and Sarkar present a model that is a hy-
brid of the PDM’s by Barbará et al. [BGMP92] and Cavallo
and Pittarelli[CP87] (see [DS96]). Their relations incorpo-
rate probability stamps that are not required to add up to
unity.

7 Conclusions

We introduced GADT, a new probabilistic ADT that is es-
pecially suitable for representing data in the emerging class
of applications that monitor the physical world. Our so-
lution relies on ORDBMS ADT technology and supports
continuous ��� �	�
�� ’s. We also demonstrated that fast access
methods exist for GADT. We believe that GADT is an impor-
tant step towards general database support for data whose
uncertainty is represented by continuous ��� �	�
�� ’s. We also
presented the general notion of a probability space ADT
(PSADT) and showed how GADT conforms to it. The
PSADT model is defined in terms of measure-theory and
thus encompasses both discrete and continuous ��� �	�
�� ’s.

This paper represents our intial work on probabilistic
data models, and there are numerous avenues for future
work:

� Physical measurements often involve more than one
dimension. For instance, most astronomical data are
represented as two-dimensional gaussians. We intend
to study such multi-dimensional ��� �	�
�� ’s.

� Gaussians are not the only relevant ��� �	�
�� for mod-
elling physical measurements. For instance, heavy-
tailed non-gaussian distributions have been intro-
duced to model phenomena with impulsive back-
ground noise [Mid99]. For these reasons and those
given in Section 5.1, we are interested in the challenge
of supporting arbitrary ��� �	�
�� ’s.

� Since we are interested in sensor data reduction, we
would like to extend the model by introducing aggre-
gate operators.

� We are currently investigating how we can use GADT

to represent the results of approximate query answers,
where the uncertainty associated with query incom-
pleteness combines with the uncertainty inherent in the
measurement data.

� Interesting questions regarding the processing and op-
timization of general queries on uncertain data await
further exploration.

� Since most continuous ��� �	�
�� ’s represent real-valued
data, it is worth inquiring into the possibility of a gen-
eral “probabilistic arithmetic.”

Acknowledgments. We thank Alin Dobra, Alexandre Ev-
fimievski, Adam Florence, Steve Vavasis, Divesh Srivas-
tava, and Dexter Kozen for helpful discussions.

References

[AAE98] Pankaj K. Agarwal, Lars Arge, and Jeff Erickson. Ef-
ficient searching with linear constraints. In PODS,
pages 169–178, 1998.

[AKG99] Serge Abiteboul, Paris C. Kanellakis, and Gösta
Grahne. On the representation and querying of sets
of possible worlds. Theoretical Computer Science,
78(1):158–187, 1999.

[AR84] M. Anvari and G. F. Rose. Fuzzy relational databases.
In J. C. Bezdek, editor, Proceedings of the 1st Inter-
national Conference on Fuzzy Information Process-
ing, pages B–6–3. CRC Press, 1984.

[Bar95] Robert G. Bartle. The Elements of Integration and
Lebesgue Measure. Wiley, 1995.

64

[BGMP92] Daniel Barbará, Hector Garcia-Molina, and Daryl
Porter. The management of probabilistic data. TKDE,
4(5):487–502, 1992.

[Bil95] P. Billingsley. Probability and Measure. Wiley, 1995.

[BS00] Philippe Bonnet and Praveen Seshadri. Device
database systems. In ICDE 2000, San Diego, Califor-
nia, USA, page 194. IEEE Computer Society, 2000.

[CP87] Roger Cavallo and Michael Pittarelli. The theory of
probabilistic databases. In Peter M. Stocker, William
Kent, and Peter Hammersley, editors, VLDB 1987,
Brighton, England, pages 71–81. Morgan Kaufmann,
1987.

[DS96] Debabrata Dey and Sumit Sarkar. A probabilistic re-
lational model and algebra. TODS, 21(3):339–369,
1996.

[EGHK99] Deborah Estrin, Ramesh Govindan, John Heidemann,
and Satish Kumar. Next century challenges: scalable
coordination in sensor networks. In Proceedings of
the fifth annual ACM/IEEE International Conference
on Mobile Computing and Networking August 15 -
19, 1999, Seattle, WA USA, pages 263–270, 1999.

[Fel66] W. Feller. An Introduction to Probability Theory and
its Applications. Wiley, 1966.

[FGB01] Anton K. Faradjian, Johannes Gehrke, and Philippe
Bonnet. A measure-theoretic probabilistic data
model. Technical report, Cornell University, 2001.

[GRSY97] Jonathan Goldstein, Raghu Ramakrishnan, Uri Shaft,
and Jie-Bing Yu. Processing queries by linear con-
straints. In PODS, pages 257–267, 1997.

[IL84] Tomasz Imieliński and Witold Lipski Jr. Incomplete
information in relational databases. Journal of the
ACM, 31(4):761–791, October 1984.

[KF88] G. J. Klir and T. A. Folger. Fuzzy Sets, Uncertainty
and Information. Prentice Hall, New Jersey, 1988.

[Lip79] Witold Lipski Jr. On semantic issues connected with
incomplete information databases. TODS, 4(3):262–
296, 1979.

[LLRS97] Laks V. S. Lakshmanan, Nicola Leone, Robert Ross,
and V. S. Subrahmanian. Probview: A flexible prob-
abilistic database system. TODS, 22(3):419–469,
1997.

[LS94] Laks V. S. Lakshmanan and Fereidoon Sadri. Proba-
bilistic deductive databases. In Maurice Bruynooghe,
editor, Logic Programming, Proceedings of the 1994
International Symposium, November 13-17, ISBN 0-
262-52191-1, pages 254–268, 1994.

[Mid99] D. Middleton. Non-gaussian noise models in sig-
nal processing for telecommunications: New methods
and results for class a and class b noise models. IEEE
Transactions on Information Theory, 45:1129–1149,
May 1999.

[Pag96] Clive G. Page. Astronomical tables, 2-d indexing, and
fuzzy-joins. In Per Svensson and James C. French,
editors, SSDBM 1996, pages 44–52. IEEE Computer
Society, 1996.

[Pit94] Michael Pittarelli. An algebra for probabilistic
databases. TKDE, 6(2):293–303, 1994.

[RM88] K. V. S. V. N. Raju and Arun K. Majumdar. Fuzzy
functional dependencies and lossless join decompo-
sition of fuzzy relational database systems. TODS,
13(2):129–166, 1988.

[Ses98] Praveen Seshadri. Enhanced abstract data types in
object-relational databases. VLDB Journal, 7(3):130–
140, 1998.

[SKT � 00] Alexandar Szalay, Peter Z. Kunszt, Ani Thakar, Jim
Gray, and Donald R. Slutz. Designing and mining
multi-terabyte astronomy archives: The sloan digital
sky survey. In Weidong Chen, Jeffrey F. Naughton,
and Philip A. Bernstein, editors, SIGMOD 2000, vol-
ume 29, pages 451–462. ACM, 2000.

[SP97] Praveen Seshadri and Mark Paskin. Predator: An or-
dbms with enhanced data types. In Joan Peckham,
editor, SIGMOD 1997, pages 568–571. ACM Press,
1997.

[Tay82] John R. Taylor. An Introduction to Error Analy-
sis: The Study of Uncertainties in Physical Measure-
ments. University Science Books, 1982.

[Won82] Eugene Wong. A statistical approach to incomplete
information in database systems. TODS, 7(3):470–
488, 1982.

1

65

Query Processing for Sensor Networks

Yong Yao Johannes Gehrke

Department of Computer Science
Cornell University
Ithaca, NY 14850

{yao,johannes}@cs.cornell.edu

Abstract

Hardware for sensor nodes that combine phys-
ical sensors, actuators, embedded processors,
and communication components has advanced
significantly over the last decade, and made
the large-scale deployment of such sensors a
reality. Applications range from monitoring
applications such as inventory maintenance
over health care to military applications.
In this paper, we evaluate the design of a
query layer for sensor networks. The query
layer accepts queries in a declarative language
that are then optimized to generate efficient
query execution plans with in-network pro-
cessing which can significantly reduce resource
requirements. We examine the main architec-
tural components of such a query layer, con-
centrating on in-network aggregation, interac-
tion of in-network aggregation with the wire-
less routing protocol, and distributed query
processing. Initial simulation experiments
with the ns-2 network simulator show the
tradeoffs of our system.

1 Introduction

Recent developments in hardware have enabled the
widespread deployment of sensor networks consisting
of small sensor nodes with sensing, computation, and
communication capabilities. Already today networked
sensors measuring only a few cubic inches can be pur-
chased commercially, and Moore’s law tells us that
we will soon see components that measure 1/4 of a
cubic inch, running an embedded version of a stan-
dard operating system, such as an embedded version

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 2003 CIDR Conference

of Linux or Windows CE .NET [2, 1]. Figure 1 shows
a Berkeley MICA Mote[13], one of the platforms avail-
able commercially today, and Figure 2 shows its hard-
ware characteristics.1 Sensor nodes come in a variety
of hardware configurations, from nodes connected to
the local LAN attached to permanent power sources to
nodes communicating via wireless multi-hop RF radio
powered by small batteries, the types of sensor nodes
considered in this paper. Such sensor nodes have the
following resource constraints:

• Communication. The wireless network con-
necting the sensor nodes provides usually only a
very limited quality of service, has latency with
high variance, limited bandwidth, and frequently
drops packets. [28].

• Power consumption. Sensor nodes have lim-
ited supply of energy, and thus energy conserva-
tion needs to be of the main system design con-
siderations of any sensor network application. For
example, the MICA motes are powered by two AA
batteries, that provide about 2000mAh [13], pow-
ering the mote for approximately one year in the
idle state and for one week under full load.

• Computation. Sensor nodes have limited com-
puting power and memory sizes. This restricts
the types of data processing algorithms on a sen-
sor node, and it restricts the sizes of intermediate
results that can be stored on the sensor nodes.

• Uncertainty in sensor readings. Signals de-
tected at physical sensors have inherent uncer-
tainty, and they may contain noise from the envi-
ronment. Sensor malfunction might generate in-
accurate data, and unfortunate sensor placement
(such as a temperature sensor directly next to the
air conditioner) might bias individual readings.

Future applications of sensor networks are plentiful.
In the intelligent building of the future, sensors are de-
ployed in offices and hallways to measure temperature,

1MICA motes are available from www.xbow.com.

66

goodelle
Text Box
Appendix D:

Figure 1: A Berkeley MICA Mote

Processor 4Mhz, 8bit MCU (ATMEL)
Storage 512KB

916Mhz Radio
Radio (RF Monolithic)
Communication
Range 100 ft

Data Rate 40 Kbits/sec
Transmit Current 12 mA
Receive Current 1.8 mA
Sleep Current 5 uA

Figure 2: Hardware Characteristics of a MICA Mote

noise, light, and interact with the building control sys-
tem. People can pose queries that are answered by
the sensor network, such as “Is Yong in his office”, or
“Is there an empty seat in the meeting room?” An-
other application is scientific research. As an example,
consider a biologist who may want to know of the ex-
istence of a specific species of birds, and once such a
bird is detected, the bird’s trail should be mapped as
accurately as possible. In this case, the sensor network
is used for automatic object recognition and tracking.
More specific applications in different fields will arise,
and instead of deploying preprogrammed sensor net-
works only for specific applications, future networks
will have sensor nodes with different physical sensors
for a wide variety of application scenarios and different
user groups.2

In this paper, we develop a query layer for wireless
sensor networks. Our approach is motivated by the fol-
lowing three design goals. First, we believe that declar-
ative queries are especially suitable for sensor network
interaction: Clients issue queries without knowing how
the results are generated, processed, and returned to
the client. Sophisticated catalog management, query
optimization, and query processing techniques will ab-
stract the user from the physical details of contact-
ing the relevant sensors, processing the sensor data,
and sending the results to the user. Thus one of the
main roles of the query layer is to process declarative
queries.

Our second design goal is motivated by the impor-
tance of preserving limited resources, such as energy

2The MICA motes already support temperature sensors,
light sensors, magnetometers, accelerometers, and microphones.

and bandwidth in battery-powered wireless sensor net-
works. Data transmission back to a central node for
offline storage, querying, and data analysis is very ex-
pensive for sensor networks of non-trivial size since
communication using the wireless medium consumes a
lot of energy. Since sensor nodes have the ability to
perform local computation, part of the computation
can be moved from the clients and pushed into the
sensor network, aggregating records, or eliminating ir-
relevant records. Compared to traditional centralized
data extraction and analysis, In-network processing
can reduce energy consumption and reduce bandwidth
usage by replacing more expensive communication op-
erations with relatively cheaper computation opera-
tions, extending the lifetime of the sensor network sig-
nificantly. For example, the ratio of energy spent in
sending one bit versus executing one instruction ranges
from 220 to 2900 in different architectures [29].3 Thus
the second main role of the query layer is to perform
in-network processing.

Different applications usually have different require-
ments, from accuracy, energy consumption to delay.
For example, a sensor network deployed in a battle-
field or rescue region may only have a short life time
but a high degree of dynamics. On the other had, for a
long-term scientific research project that monitors an
environment, power-efficient execution of long-running
queries might be the main concern. More expensive
query processing techniques may shorten processing
time and improve result accuracy, but might use a lot
of power. The query layer can generate query plans
with different tradeoffs for different users.

In this paper, we propose and evaluate a database
layer for sensor networks; we call the component of
the system that is located on each sensor node the
query proxy. Architecturally, on the sensor node, the
query proxy lies between the network layer and the
application layer, and the query proxy provides higher-
level services through queries.

Given the view of a sensor network as a huge dis-
tributed database system, we would like to adapt ex-
isting techniques from distributed and heterogeneous
database systems for a sensor network environment.
However, there are major differences between sen-
sor networks and traditional distributed and hetero-
geneous database systems.

First, sensor networks have communication and
computation constraints that are very different from
regular desktop computers or dedicated equipment in
data centers, and query processing has to be aware of
these constraints. One way of thinking about such con-
straints is the analogous interaction with the file sys-
tems in traditional database systems [37]. Database
systems bypass the file system buffer to have direct

3This is only a rule of thumb, since transmission range, bit
error rates, and instruction width influence this parameter sig-
nificantly.

67

control over the disk. For a sensor network database
system, the analogous counterpart is the networking
layer, and for intelligent resource management we have
to ensure that the query processing layer is tightly in-
tegrated with the networking layer. Second, the notion
of the cost of a query plan has changed, as the critical
resource in a sensor network is power, and query opti-
mization and query processing have to be adapted to
take this optimization criterion into account.

While developing techniques that address these is-
sues, we must not forget that scalability of our tech-
niques with the size of the network, the data volume,
and the query workload is an intrinsic consideration to
any design decision.

Overview of the paper. The remainder of the
paper is structured as follows. In the next section,
we introduce our model of a sensor network, sensor
data, and the class of queries that we consider in this
paper. We then demonstrate our algorithms to process
simple aggregate queries with in-network aggregation
(Section 3), and investigate the interaction between
the routing layer and the query layer (Section 4). We
discuss how to create query plans to evaluate more
complicated queries, and discuss query optimization
for specific types of queries (Section 5). In a thorough
simulation study, we examine the performance of our
approach, and compare and analyze the performance
of different query plans (Section 6).

2 Preliminaries

2.1 Sensor Networks

A sensor network consists of a large number of sensor
nodes [27]. Individual sensor nodes (or short, nodes)
are connected to other nodes in their vicinity through
a wireless network, and they use a multihop routing
protocol to communicate with nodes that are spatially
distant. Sensor nodes also have limited computation
and storage capabilities: a node has a general-purpose
CPU to perform computation and a small amount of
storage space to save program code and data.

We will distinguish a special type of node called a
gateway node. Gateway nodes are connected to com-
ponents outside of the sensor network through long-
range communication (such as cables or satellite links),
and all communication with users of the sensor net-
work goes through the gateway node.4

Since sensors are usually not connected to a fixed
infrastructure, they use batteries as their main power
supply, and preservation of power is one of the main
design considerations of a sensor network [34]. This
makes reduction of message traffic between sensors
very important.

4Relaxations of this requirement, such as communication
with the network via UAVs or via an arbitrary node are left
for future work.

SELECT {attributes, aggregates}
FROM {Sensordata S}
WHERE {predicate}
GROUP BY {attributes}
HAVING {predicate}
DURATION time interval
EVERY time span e

Figure 3: Query Template

2.2 Sensor Data

A sensor node has one or more sensors attached that
are connected to the physical world. Example sensors
are temperature sensors, light sensors, or PIR sensors
that can measure the occurrence of events (such as the
appearance of an object) in their vicinity. Thus each
sensor is a separate data source that generates records
with several fields such as the id and location of the
sensor that generated the reading, a time stamp, the
sensor type, and the value of the reading. Records
of the same sensor type from different nodes have the
same schema, and collectively form a distributed table.
The sensor network can thus be considered a large dis-
tributed database system consisting of multiple tables
of different types of sensors.

Sensor data might contain noise, and it is often pos-
sible to obtain more accurate results by fusing data
from several sensors [12]. Summaries or aggregates of
raw sensor data are thus more useful to sensor appli-
cations than individual sensor readings [21, 10]. For
example, when monitoring the concentration of a dan-
gerous chemical in an area, one possible query is to
measure the average value of all sensor readings in that
region, and report whenever it is higher than some pre-
defined threshold.

2.3 Queries

We believe that declarative queries are the preferred
way of interacting with a sensor network. Rather
than deploying application-specific procedural code
expressed in a Turing-complete programming lan-
guage, we believe that sensor network applications are
naturally data-driven, and thus we can abstract the
functionality of a large class of applications into a com-
mon interface of expressive queries. In this paper, we
consider queries of the simple form shown in Figure 3,
and we leave the design of a suitable query language
for sensor networks to future work. We also extend
the template to support nested queries, where the ba-
sic query block shown in Figure 3 can appear within
the WHERE or HAVING clause of another query block.

Our query template has the obvious semantics: The
SELECT clause specifies attributes and aggregates
from sensor records, the FROM clause specifies the
distributed relation of sensor type, the WHERE clause
filters sensor records by a predicate, the GROUP BY

68

SELECT AVG(R.concentration)
FROM ChemicalSensor R
WHERE R.loc IN region
HAVING AVG(R.concentration) > T
DURATION (now,now+3600)
EVERY 10

Figure 4: Example Aggregate Query

clause classifies sensor records into different partitions
according to some attributes, and the HAVING clause
eliminates groups by a predicate. Note that it is possi-
ble to have join queries by specifying several relations
in the FROM clause.

One difference between our query template and
SQL is that our query template has additional support
for long running, periodic queries. Since many sensor
applications are interested in monitoring an environ-
ment over a longer time-period, long-running queries
that periodically produce answers about the state of
the network are especially important. The DURA-
TION clause specifies the life time of a query and the
EVERY clause determines the rate of query answers:
we compute a query answer every e seconds (see Fig-
ure 3 [21]). We call the process of computing a query
answer a round. The focus of this paper is the com-
putation of aggregate queries, in which a set of sensor
readings is summarized into a single statistic.

Note that our query template has only limited usage
for event-oriented applications. For example, to moni-
tor whether the average concentration of a chemical is
above a certain threshold, we can use the long-running
query shown in Figure 4, but there is a delay of 10
seconds between every recomputation of the average.
Event oriented applications are an interesting topic for
future research, as the query processing strategies that
we propose are optimized for long-running periodic
queries, and not event-oriented queries and triggers.

3 Simple Aggregate Query Processing

A simple aggregate query is an aggregate query without
Group By and Having clauses, a very popular class
of queries in sensor networks [21]. In this section we
outline how to process such simple aggregate queries.
Query processing strategies for more general queries
are discussed in Section 5.

3.1 In-Network Aggregation

A query plan for a simple aggregate query can be di-
vided into two components. Since queries require data
from spatially distributed sensors, we need to deliver
records from a set of distributed nodes to a central
destination node for aggregation by setting up suit-
able communication structures for delivery of sensor
records within the network. We call this part of a
query plan its communication component, and we call

the destination node the leader of the aggregation. In
addition, the query plan has a computation component
that computes the aggregate at the leader and poten-
tially computes already partial aggregates at interme-
diate nodes.

Recall that power is one of the main design desider-
ata when devising query processing strategies for sen-
sor networks. If we coordinating both the computation
and communication component of a query plan, we
can compute partial aggregates at intermediate nodes
as long as they are well-synchronized; this reduces the
number of messages sent and thus saves power. We
address synchronization in the next section, and con-
sider here three different techniques on how to inte-
grate computation with communication:

Direct delivery. This is the simplest scheme.
Each source sensor node sends a data packet consist-
ing of a record towards the leader, and the multi-hop
ad-hoc routing protocol will deliver the packet to the
leader. Computation will only happen at the leader
after all the records have been received.

Packet merging. In wireless communication, it is
much more expensive to send multiple smaller packets
instead of one larger packet, considering the cost of re-
serving the channel and the payload of packet headers.
Since the size of a sensor record is usually small and
many sensor nodes in a small region may send pack-
ets simultaneously to process the answer for a round
of a query, we can merge several records into a larger
packet, and only pay the packet overhead once per
group of records. For exact query answers with holis-
tic aggregate operators like Median, packet merging is
the only way to reduce the number of bytes transmit-
ted [10].

Partial aggregation. For distributive and alge-
braic aggregate operators [10], we can incrementally
maintain the aggregate in constant space, and thus
push partial computation of the aggregate from the
leader node to intermediate nodes. Each intermediate
sensor node will compute partial results that contain
sufficient statistics to compute the final result.

3.2 Synchronization

To perform packet merging or partial aggregation, we
need to coordinate sensor nodes within the communi-
cation component of a query plan. A node n needs
to decide whether other nodes n1, . . . , nk are going to
route data packets through n; in this case n has the
opportunity of either packet merging or partial aggre-
gation. Thus a node n needs to build a list of nodes
it is expecting messages from, and it needs to decide
how long to wait before sending a message to the next
hop.

For duplicate sensitive aggregate operators, like
SUM and AVG, one prerequisite to perform partial ag-
gregation is to send each record only once, otherwise
duplicate records might appear in partially aggregated

69

results and bias the result, thus a simple spanning
tree might be a suitable communication structure. For
other aggregate operators, including MAX and MIN,
it is possible to send multiple copies of a record along
different paths without any influence on the query ac-
curacy; thus a suitable communication structure might
be a DAG rooted at the leader.

The task of synchronization in this tree or DAG is
then for each node in each round of the query to deter-
mine how many sensor readings to wait for and when
to perform packet merging or partial aggregation.

Incremental Time Slot Algorithm. Let us first
discuss the following simple algorithm. At the begin-
ning of a round, each sensor node sets up a timer,
and waits for a special waiting time for data packets
from its children in the spanning tree or DAG to ar-
rive. The length of the timer at node n is set to the
depth of the structure rooted at n times a standard-
ized time slot. However, this algorithm has a large
cost in reality. First, it is very difficult to determine in
advance how long a node needs to collect records from
its children. The time to process the data, schedule
the packet, reserve the channel, and retransmit pack-
ets due to frequently temporary link failures can vary
significantly. Although the expected size of a time slot
is small, it has a heavy tail with a big variance. But
if the time slot is too large, the accumulated delay at
the leader could be very long if the depth of the tree
or DAG is large.

Second, with frequent link failures, it is expensive to
update the time-out value every time the structure of
the communication structure changes. Although most
broken links can be repaired locally, repairs may effect
the depth of a large number of nodes, and it is expen-
sive to update the timer for all of these nodes. Third,
sensor nodes are never completely time-synchronized
unless expensive time synchronization protocols or fre-
quent GPS readings are used.

Our Approach. We take a very pragmatic ap-
proach to synchronization. Note that for a long-
running query, the communication behavior between
two sensors n and p is consistent over short periods of
time, so it is possible to use historical information to
predict future behavior. Assuming that p is the par-
ent of node n. After p receives a record from n, it may
expect to receive another record from n in the next
round, and thus p adds n to its waiting list. How-
ever, such prediction may fail in two cases. First, the
parent of node n may change in the next round if n
reroutes and has a new parent due to network topology
changes and route updates. Second, n could perform
a local selection on its records, and only send a record
to p if the selection condition is satisfied. Such condi-
tions are only satisfied from time to time, and make
the prediction at p fail.

In our approach, we use a timer to recover from false
prediction at parent nodes. On the other hand, since

a child node is able to determine whether its parent
is expecting a packet from it, the child can generate a
notification packet if its parent’s prediction is wrong.
We found that this bi-directional prediction approach
model the relationship between the parent and child
nodes very well in practice, as shown in Section 6.

4 Routing and Crash Recovery

To execute simple aggregate queries, sensor nodes have
to send their records to a leader, aggregate them into a
final result, and then deliver the final result to the gate-
way node. Note that a sensor node can only communi-
cate directly with other nodes in its vicinity, limited by
the transmission power of the wireless radio. To send
messages to a distant node, a multi-hop route connect-
ing the node to the destination has to be established
in advance. A packet is forwarded by internal nodes
along the route until the packet reaches its destina-
tion. Note that this structure is similar in both wired
and wireless networks, but there are major differences.
In a wired network, the network structure is almost
fixed and most routing problems are handled at a few
backbone routers. In a wireless network, such as a
sensor network, limited connectivity requires all nodes
to participate in routing. In addition, the low quality
of the communication channel and frequent topology
changes make the network quite unstable. Thus more
complicated routing protocols are required for wireless
networks.

The networking community has developed many
different ad-hoc network routing algorithms. A sepa-
rate routing layer in the protocol stack provides a send
and receive interface to the upper layer and hides the
internals of the wireless routing protocol. In this sec-
tion, we show that a routing layer for a query process-
ing workload has slightly different requirements than
a traditional ad-hoc routing layer, and then we outline
some initial thoughts on how to adapt AODV [26], a
popular wireless routing protocol, to a query process-
ing workload.

4.1 Wireless Routing Protocols

The two main tasks of a routing protocol are route dis-
covery and route maintenance. Route discovery estab-
lishes a route connecting a pair of nodes when required
by the upper layer, and route maintenance repairs the
route in case of link failures. Many wireless rout-
ing protocols have been proposed and implemented,
mostly aimed at ad-hoc networks. A distributed and
adaptive routing protocol, in which nodes share the
routing decision and nodes can change routes accord-
ing to the network status, is more suitable to sen-
sor networks. Such protocols can be further classified
into proactive, reactive and hybrid routing protocols.
Proactive routing protocols, like DSDV [25], may set
up routes between any pair of nodes in advance; while
reactive routing protocols create and repair routes only

70

on demand. Hybrid routing protocols, e.g. ZRP [11],
combine both properties of proactive and reactive pro-
tocols.

AODV is a typical reactive routing algorithm. It
builds routes between nodes only as desired by the ap-
plication layer. There are several reasons why we use
AODV as the routing protocol for our study. First,
reactive routing protocols scale to large-size networks,
such as sensor network with thousands of nodes. Sec-
ond, AODV does not generate duplicate data packets,
which is a requirement to do in-network aggregation
for duplicate-sensitive aggregate operators. Finally,
AODV is a popular ad-hoc network routing protocol
and it is implemented in several simulators. Although
our discussion is based on AODV, our observations
apply to other routing protocols as well.

4.2 Extensions to the Network Interface

Recall from Section 3 that we can optimize aggre-
gate operators through in-network aggregation, such
as packet merging and partial aggregation at inter-
nal nodes. These techniques require internal nodes to
intercept data packets passing through them to per-
form packet merging or partial aggregation. However,
with the traditional “send and receive” interfaces of
the network layer, only the leader will receive the data
packets. The network layer on an internal node will
automatically forward the packages to the next hop to-
wards the destination, and the upper layer is not aware
of data packets traveling through the node. This func-
tionality is sufficient for direct delivery of packets to
a destination node, but to implement in-network ag-
gregation, a node needs the capability to “intercept”
packages that are not destined for itself; the query
layer needs a way to communicate to the network layer
which and when it wants to intercept packages that are
destined for the leader [14].

With filters [14], the network layer will first pass
a package through a set of registered functions that
can modify (and possibly even delete) the packet. In
case of the query layer, if a node n is scheduled to
aggregate data from all children nodes, it can inter-
cept all data packets received from the children nodes
and cache the aggregated result. At a specific time,
n will generate a new data packet and send it to the
leader. All this happens completely transparently to
the network layer.

4.3 Modifications to Wireless Routing Proto-
cols

Existing wireless routing protocols are not designed
for the communication patterns exhibited by a query
processing layer: they are designed for point-to-point
communication, and are usually evaluated by select-
ing two random nodes and establishing and maintain-
ing a communication path between them. A sensor

network with a query layer has a significantly differ-
ent communication pattern: Many source nodes send
tuples to a common node, like a leader of an aggre-
gation, or a gateway node. In addition, in a regular
ad-hoc network, a node has no knowledge about the
communication intents of neighboring nodes, whereas
in a sensor network, data transfer to the leader node is
usually synchronized to perform aggregation. Thus a
node can often estimate when neighboring nodes (such
as children in a spanning tree) will send messages to
it. We describe here a series of enhancements to one
specific routing protocol, AODV [26], although we be-
lieve that our techniques are general enough to apply
to any wireless routing protocol.

Route initialization. Before sending data pack-
ets to the leader, each sensor has to establish a route
to the leader, or determine who is the next hop in
the DAG or spanning tree. Instead of initializing the
route for each node separately from the source node
as it would happen in AODV, we can create all the
routes together by broadcasting a route initialization
message originating at the leader of the aggregation.
The message contains a hop count which is used for
nodes to determine their depth in the tree. Using this
initial broadcast, nodes can save the reverse path as
the route to the leader.

Route maintenance. Reliability plays a very im-
portant role in in-network aggregation. Since each
data packet contains an aggregate result from mul-
tiple sensor nodes, dropping a data packet, especially
if near the leader, will seriously decrease the accuracy
of the final result. The problem is more serious in sen-
sor networks, in which link or node failures happens
frequently. We describe two techniques that improve
AODV in case of failures.

Local Repair. In AODV, when a broken link is de-
tected, the source node n broadcasts a request to find
an alternative route. An internal node n′ cannot reply
to the request unless n′ has a “fresher route” to the
leader than n. The efficiency of the local repair algo-
rithm depends on how fast a node can find an up-to-
date route in its neighborhood, and AODV uses a se-
quence number to reflect route “freshness”. Given that
query processing has a very regular communication
structure, in which many of nodes want to route pack-
ets to the same destination, we can extend AODV’s
idea of a sequence number to repair broken routes more
efficiently. Since a broken link has no effect on other
nodes which are close to the leader, we integrate the
depth of a node into the packet sequence number to
differentiate sequence numbers between nodes that are
spatially close. The new algorithm does not depend
on the exact depth of a node to compute the new se-
quence number; a rough approximation that preserves
relative depths is sufficient. Using an approximation
to depth prevents a node from updating the depths of
all nodes on the path to the leader after the broken

71

route is repaired, which is a very expensive operation.
Bunch Repair. Local repair can find a new route to

bypass a broken link or node in the neighborhood, but
it may fail if significant topology changes happen, or a
large number of links fail simultaneously due to a spa-
tial disturbance (e.g., large noise in an area). In this
case, it is cheaper to repair all routes directly from the
leader (by re-broadcasting the route initialization mes-
sage). Some feedback is required at the leader to active
this operation to avoid unnecessary re-initialization.
In this first version of our query layer, we re-broadcast
a the tree initialization message whenever we receive
less than a user-defined fraction of all tuples within an
user-defined time interval. (We can calculate the num-
ber of tuples that contributed to an aggregate query
by adding a COUNT attribute to the partial state of
all aggregates.)

5 Query Plans

In this section, we outline the structure of a query
plan and discuss general techniques to process sensor
network queries.

5.1 Query Plan Structure

Let us consider an example query that we will use to il-
lustrate the components of a query plan. Consider the
query “What is the quietest open classroom in Upson
Hall?”.5 Assume that the computation plan for this
query is to first compute the average acoustic value of
each open classroom and then to select the room with
the smallest number. There are two levels of aggre-
gation in this plan: (1) to compute the average value
of each qualified classroom, and (2) to select the min-
imum average over all classrooms. The output of the
first level aggregation is the input to the second level
aggregation.

Users may pose even more complicated queries with
more levels of aggregations, and more complex inter-
actions. A query plan decides how much computation
is pushed into the network and it specifies the role and
responsibility of each sensor node, how to execute the
query, and how to coordinate the relevant sensors. A
query plan is constructed by flow blocks, where each
flow block consists of a coordinated collection of data
from a set of sensors at the leader node of the flow
block. The task of a flow block is to collect data from
the relevant sensor nodes and to perform some com-
putation at the destination or internal nodes. A flow
block is specified by different parameters such as the
set of source sensor nodes, a leader selection policy,
the routing structure used to connect the nodes to the
leader (such as a DAG or tree), and the computation
that the block should perform.

5Upson Hall is a building with several classrooms located on
the Cornell Campus.

A query plan consists of several flow blocks. Creat-
ing a flow block and its associated communication and
computation structure (which we also call a cluster)
uses resources in the sensor network. We need to ex-
pend messages to maintain the cluster through a peri-
odical heart beat message in which the leader indicates
that it is still alive; in case the cluster leader fails, a
costly leader election process is required. In addition,
a cluster might also induce some delay, as it coordi-
nates computation among the sensors in the cluster.
Thus if we need to aggregate sensor data in a region,
we should reuse existing clusters instead of creating a
new cluster, especially if the data sources are loosely
distributed over a larger area, in which case the main-
tenance cost increases. On the other hand, we should
create a flow block if it significantly reduces the data
size at the leader node and saves costly transmission
of many individual records.

It is the optimizer’s responsibility to determine the
exact number of flow blocks and the interaction be-
tween them. Compared to a traditional optimizer, we
would like to emphasize two main differences. First,
the optimizer should try to reduce communication
cost, while satisfying various user constraints such as
accuracy of the query, or a user-imposed maximum
delay of receiving the query answers. The second dif-
ference lies in the building blocks of the optimizer.
Whereas in traditional database systems a building
block is an operator in the physical algebra, our basic
building block in a sensor database system is a flow
block, which specifies both computation and commu-
nication within the block.

5.2 Query Optimization

In this section we will discuss how to create a good
query plan for more complicated queries. Our discus-
sion stays at the informal level with the goal to help
us decide what meta-data we need for the optimizer in
the systems catalog. We would like to emphasize that
creation of the best query plan for an arbitrary query is
a hard problem, and our work should be considered as
an initial step towards the design and implementation
of a full-fledged query optimizer. We leave experimen-
tal evaluations of different query plans to section 6,
and the design and implementation of a full-fledged
optimizer to future work.

Extension to GROUP BY and HAVING
Clauses. Let us consider an aggregate query with
GROUP BY and HAVING clauses. The following query
computes the average value for each group of sensors
and filters out groups with average smaller than some
threshold.

(Q1) SELECT D.gid, AVG(D.value)
FROM SensorData D
GROUP BY D.gid
HAVING AVG(D.value)>Threshold

72

There are two alternative plans for this query. We
can create a flow block for each group, or we can cre-
ate a flow block that is shared by multiple groups.
To create a separate flow block can aggregate sen-
sor records of the same group as soon as possible,
shorten the path length, and allow to apply the predi-
cate of the HAVING clause to the aggregate results ear-
lier, which saves more communication if the selectivity
of the predicate is low. The optimizer should take sev-
eral parameters into account to make the best plan.
One parameter is the overlap of the distribution of the
physical locations of the sensors that belong to the dif-
ferent groups. If sensors that below to a single group
are physically close, it is better to create a separate
flow block to aggregate them together, since the com-
munication cost to aggregate close-by sensors is usu-
ally low. However, if sensors from different groups are
spatially interspersed, it is more efficient to construct
a single flow block shared by all groups.

Joins. The computation part of a flow block does
not need to be an aggregate operator. It is possible to
add join operators to our query template and define
flow blocks with joins. Joins will be common in appli-
cations for tracking or object detection. For example,
a user may pose a query to select all objects detected
in both regions R1 and R2. The following query has a
join operator to connect sensor detections in the two
regions.

(Q2) SELECT oid
FROM SensorData D1, SensorData D2
WHERE D1.loc IN R1 AND D2.loc IN R2

AND D1.oid = D2.oid

Join operators represent a wide range of possible
data reductions. Depending on the selectivity of the
join, it is possible to either reduce or increase the re-
sulting data size. If the join increases the result size,
it is more expensive to compute the join result at the
leader instead of having the leader send out the tu-
ples from the base relation. Relevant catalog data to
make an informed decision concerns the selectivity of
the join and the location of the leader.

6 Experimental Evaluation

6.1 Experimental Setup

We have started to implement a prototype of our query
processing layer in the ns-2 network simulator [4]. Ns-2
is a discrete event simulator targeted at simulating net-
work protocols to highest fidelity. Due to the strong in-
teraction between the network layer and our proposed
query layer, we decided to simulate the network layer
to a high degree of precision, including collisions at
the MAC layer, and detailed energy models developed
by the networking community. In our experiments, we
used IEEE 802.11 as the MAC layer [36], setting the

communication range of each sensor to 50m and as-
suming bi-directional links; this is the setup used in
most other papers on wireless routing protocols and
sensor networks in the networking community [14].
In our energy model the receive power dissipation is
395mW, and the transmit power dissipation is 660mW
[14]. (This matches numbers from previous studies.)
There are many existing power-saving protocols that
can turn the radio to idle [35, 27], thus we do not take
the energy consumption in the idle state into account.
Sensor readings were modeled as 30 bytes tuples.6

6.2 Simple Aggregate Query

Let us first investigate experimentally the effects of in-
network aggregation. We run a simple aggregate query
that computes the average sensor value over all sensor
nodes every 10 seconds for 10 continuous rounds. Sen-
sors are randomly distributed in a query region with
different size. The gateway node, which is located in
the left-upper corner of the query region, is the leader
of the aggregate query. Each experiment is the average
of ten runs with randomly generated maps.

We first investigate the effect of in-network aggre-
gation on the average dissipated energy per node as-
suming a fixed density of sensor nodes throughout the
network (in this experiment we set the average sensor
node density to 8 sensors in a region of 100m×100m).

Figure 5 shows the effect of increasing the number
of sensors on the average energy usage of each sensor.
In the best case, every sensor only needs to send one
merged data packet to the next hop in each round,
no matter how many sensors are in the network. The
packet merge curve increases slightly as intermediate
packets get larger as the number of nodes grows. With-
out in-network aggregation, a node n has to send a
data packet for each node whose route goes through
n, so energy consumption increases very fast.

We also investigated the effect of in-network aggre-
gation on the delay of receiving the answer at the gate-
way node as shown in Figure 6. When the network size
is very small, in-network aggregation introduces little
extra delay due to synchronization, however as the net-
work size increases, direct delivery induces much larger
delay due to frequent conflicts of packets at the MAC
layer.

6.3 Routing

To test the efficiency of our improved local repair al-
gorithm, we ran a simple aggregate query which com-
putes the average over all sensor readings every 10 sec-
onds. In this experiment, 200 sensors are randomly
distributed in a 500m*500m area. (For other exper-
iments the numbers were qualitatively similar.) We

6See the discussion of future work in Section 8 for drawbacks
of our current experimental setup.

73

�

����

����

����

����

����

����

� �� 	� ��� ��� ��� ��� �	�

��
��������

�
�
�
��
�
�
��
��
�
��
�
��
�
��
�
�
��
�
�
�
��

�
�
�
�!
"
#

����$����%�����

 �$����&������

 �����%����������

Figure 5: Average Dissi-
pated Energy

�

���

���

���

���

���

���

��	

� ��
� ��� ��� ��� ��� �
�

��
���������

�
�
�
��
�
�
��
�
��
�
��
�
�

����
���������

!� ��
�"����#�

!��
�����������
�

Figure 6: Average Delay
vs. Network Size

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0% 5% 10% 15% 20% 25%

Link Failure Ratio

A
ve

ra
ge

 D
is

si
pa

te
d

E
ne

rg
y

P
er

 N
od

e
(J

)

AODV

AODV with Improved
Local Repair

Figure 7: Improved Local
Repair Algorithm

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0% 5% 10% 15% 20% 25%
Link Failure Ratio

A
ve

ra
ge

 D
is

si
pa

te
d

E
ne

rg
y

P
er

 N
od

e
(J

)

AODV with Improved
Local Repair
Bunch Repair
(Threshold=80%)

Figure 8: Effect of Bunch
Repair

Figure 9: Cornell Map Used in Exp.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 5% 10% 15% 20%
Link Failure Ratio

A
cc

ur
ac

y

AODV with
Improved Local
Repair
Bunch Repair
(Threshold=80%)

Figure 10: Result Accuracy

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

10% 50% 100%
Selectivity

A
ve

ra
ge

 S
en

so
r D

is
si

pa
te

d
E

ne
rg

y
P

er
 R

ou
nd

Plan 1
Plan 2

Figure 11: Aggregate Query

introduced random link failures quantified as the per-
centage of crashed links in a round, and we tested their
influence on the routing protocols. Figure 7 shows the
comparison between AODV and AODV with our im-
proved local repair algorithm using different link fail-
ure rates. As the link failure rate increases, AODV
uses much more energy than the algorithm with im-
proved local repair.

We evaluated bunch repair experimentally using the
Cornell campus as the query region. About 150 sen-
sors are virtually distributed close to buildings or along
main streets; see Figure 9. Figure 8 compares the im-
proved version of AODV with and without bunch re-
pair. The threshold to active route reinitialization is
to 80 percent of the tuples. The two algorithms are
very close when link failure ratio is low, but our new
algorithm saves much energy after the failure ratio be-
comes larger. This is because bunch repair generates
much fewer route request and reply messages, espe-
cially when more links fail simultaneously.

Figure 10 shows the influence of bunch repair on the

final result accuracy.7 If several local repairs fail a se-
rious topology change happens, and thus many nodes
are disconnected temporarily. A bunch repair will be
automatically activated in this case, and thus the ac-
curacy of AODV with bunch repair does not decrease
compared to AODV while at the same time the av-
erage dissipated energy per node will be much lower
compared to AODV.

6.4 Query Plans

We first investigate the benefit of creating a flow block
according to the data reduction rate at the leader using
the following query:

(Q3) SELECT AVG(value)
FROM Sensor D
WHERE D.loc IN [(400,400),(500,500)]
HAVING AVG(value)>t

7The accuracy is measured at the end of each round. Packets
are dropped at internal nodes if they belong to the previous
round.

74

Let us consider two different query plans for Query
Q3. In Plan 1, we use an existing flow block which
covers the whole network. This flow block is also used
to collect system catalog information, thus it does not
incur additional maintenance cost. In Plan 2, we con-
struct a new flow block for Query Q3 just inside the
query region, where we first compute the average at a
leader of this block, and then send qualifying averages
to the gateway node.

Both plans may perform the HAVING operation as a
filter over the average value of the sensor reading, at
the gateway for Plan 1, but the leader node in Plan 2.
The result in Figure 11 shows that if the selectivity of
the HAVING operator is close to 100% and thus the com-
putation at the leader does not reduce the number of
outgoing averages, then there is not much difference in
terms of the average dissipated sensor energy for each
round of the query. Plan 2 spends only a little more
energy on maintenance of the additional flow block.
However, as the leader discards aggregated data pack-
ets with higher and higher probability, Plan 2 is a much
better choice. It reduces the traffic flow significantly
through aggregation at the leader much closer to data
sources, compared to the gateway node of Plan 1.

Next, we evaluate different query plans for Query
Q1, a query with a GROUP BY clause. Assume that
there are four different groups. Let us consider three
simple cases: In the distributed case, sensors that be-
low to a single group are physically close, but far away
from other groups. In the close-by case, the groups are
close to each other, but they do not overlap, whereas
in the overlap scenario, all four groups are in the same
area. We again consider two different query plans for
this query. Plan 1 creates one big cluster to be shared
by all groups. Aggregation within each group happens
at the global cluster leader. Plan 2 creates a separate
cluster for each group, and aggregates only the tuples
relevant for each group at the respective cluster leader.
Figure 16 shows the different spatial distributions of
the four groups for the three cases.

We can see from Figure 12 that if the groups are
physically close, then there is no big difference be-
tween Plans 1 and 2. However, creating one big cluster
increases the connectivity of the cluster, and reduces
the risk of network partitioning within a cluster. If
the four groups are spatially distant from each other,
Plan 2 is more efficient as the selection at the aggre-
gation leaders can reduce the number of data packets
for transmission back to the gateway node. In the last
scenario, where the different groups of sensors are ran-
domly distributed, Plan 1 outperforms Plan 2, since
the cost to collect data records at the leader is high.

Figures 13 and 14 show the influence of opera-
tor selectivity on the two plans in the previous ex-
periment for two different sensor topologies, the dis-
tributed topology in Figure 13 and the overlap topol-
ogy in Figure 14. The experiment shows that operator

selectivity has a strong influence on plan performance,
although the sensor topology has a much larger im-
pact.

Next we consider the Join Query Q2. Again we
consider two query plans to evaluate this query. In
Plan 1, sensors send all tuples back to the gateway
without any in-network computation; Plan 2 creates
a flow block for the Join operator inside the query
region. In Plan 2, in case the join reduces the data
size at the leader, the leader sends the result of the
join back to the gateway, otherwise, the leader sends
all individual data records to the gateway for the join
to be performed there.

Figure 15 shows that the cost to collect data at the
leader is non-trivial. If the join operator at the leader
fails to reduce the data size, then the total energy con-
sumption at the node increases. Thus the optimizer
needs to estimate the selectivity of the join operator,
and it needs statistics in the systems catalog to make
the right decision.

7 Related Work

Research of routing in ad-hoc wireless networks has
a long history [17, 30], and a plethora of papers has
been published on routing protocols for ad-hoc mobile
wireless networks [25, 16, 5, 26, 24, 8, 15]. All these
routing protocols are general routing protocols and do
not take specific application workloads into account,
although we believe that most of these protocols can
be augmented with the techniques similar to those that
we propose in Section 4. The SCADDS project at USC
and ISI explores scalable coordination architectures for
sensor networks [9], and their data-centric routing al-
gorithm called directed diffusion [14] first introduced
the notion of filters that we advocate in Section 4.2.

There has been a lot of work on query processing
in distributed database systems [40, 7, 23, 39, 18], but
as discussed in Section 1, there are major differences
between sensor networks and traditional distributed
database systems. Most related is work on distributed
aggregation, but existing approaches do not consider
the physical limitations of sensor networks [33, 38].
Aggregate operators are classified by their properties
by Gray et al. [10], and an extended classification with
properties relevant to sensor network aggregation has
been proposed by Madden et al. [21].

The TinyDB Project at Berkeley also investigates
query processing techniques for sensor networks in-
cluding an implementation of the system on the Berke-
ley motes and aggregation queries [19, 20, 21, 22].

Other relevant areas include work on sequence
query processing [31, 32], and temporal and spatial
databases [41].

75

�

������

������

������

������

�����

������

������

������

�	
��
���������� ����	��

�
�
	
��

�
�
�
��
�
�
��
�
�
�

��

��
�
��
�
��
�
��
�
�
��
�
�
�
��
!

�
�
�

 	����

 	����

Figure 12: Impact of Sen-
sor Distributions to Dif-
ferent Query Plan

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0% 20% 40% 60% 80% 100%
Selectivity

A
ve

ra
ge

 S
en

so
r D

is
si

pa
te

d
E

ne
rg

y
P

er
 R

ou
nd

Plan 1
Plan 2

Figure 13: Distributed
Topology

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0% 20% 40% 60% 80% 100%

Selectivity

A
ve

ra
ge

 S
en

so
r D

is
si

pa
te

d
E

ne
rg

y
P

er
 R

ou
nd

Plan 1

Plan 2

Figure 14: Overlap Topol-
ogy

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0% 50% 100% 150%
Join Selectivity

A
ve

ra
ge

 S
en

so
r D

is
si

pa
te

d
E

ne
rg

y
P

er
 R

ou
nd

Plan 1
Plan 2

Figure 15: Join Query

Physical distribution: Location of the four sensor groups
distributed [100,100,200,200] [100,400,200,500] [400,100,500,200] [400,400, 500,500]
close-by [100,100,200,200] [100,200,200,300] [200,100,300,200] [200,200,300,300]
overlap Sensors of all groups are randomly distributed [100,100,300,300]

Figure 16: Query Characteristics

8 Conclusions

Sensor networks will become ubiquitous, and the
database community has the right expertise to address
the challenging problems of tasking the network and
managing the data in the network. We described a
vision of processing queries over sensor networks, and
we discussed some initial steps in in-network aggre-
gation, implications on the routing layer, and query
optimization. We have started at Cornell to design
and implement a prototype that allows us to experi-
ment with the design space of various algorithms and
data structures [6].

Future work. This work opens a plethora of new
research directions at the boundary of database sys-
tems and networking. First, we believe that TDMA
MAC protocols will be very important in power-
constrained sensor networks [27], and we plan to in-
vestigate the interaction of a TDMA MAC layer with
routing and query processing in future work. In ad-
dition, our current simulation assumes bidirectional
links, which is usually not true in practice. Having
filters as an additional interface to the routing layer
leaves many open questions, such as an efficient imple-
mentation of filters, the order in which filters should
be evaluated, handling of conflicting actions, etc. We
assumed very simple SQL blocks as query templates
without discussing a full-fledges spatio-temporal query
language whose design is a challenging topic for future
work. In addition, we only scratched the surface of
query processing, metadata management, and query

optimization, and much work needs to be done multi-
query optimization, distributed triggers, and the de-
sign of benchmarks. We anticipate that the emergence
of new applications, as well as the implementation and
usage of our prototype system will lead to other re-
search directions. We believe that sensor networks will
be a fruitful research area for the database community
for years to come.

Acknowledgments. We thank the DARPA Sen-
sIT community for helpful discussions. Praveen She-
shadri and Philippe Bonnet made influential initial
contributions to Cougar. The Cornell Cougar Project
is supported by DARPA under contract F-30602-99-
0528, NSF CAREER grant 0133481, the Cornell Infor-
mation Assurance Institute, Lockheed Martin, and by
gifts from Intel and Microsoft. Any opinions, findings,
conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily
reflect the views of the sponsors.

References

[1] www.microsoft.com/windows/embedded/ce.net.

[2] www.redhat.com/embedded.

[3] ACM SIGMOBILE. Proceedings of MOBICOM 1998.
ACM Press.

[4] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heide-
mann, A. Helmy, P. Huang, S. McCanne, K. Varad-
han, Y. Xu, and H. Yu. Advances in network simula-
tion. IEEE Computer, 33(5):59–67, May 2000.

76

[5] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and
J. Jetcheva. A performance comparison of multi-hop
wireless ad hoc network routing protocols. [3], pages
85–97.

[6] M. Calimlim, W. F. Fung, J. Gehrke, D. Sun,
and Y. Yao. Cougar Project web page.
www.cs.cornell.edu/database/cougar.

[7] S. Ceri and G. Pelagatti. Distributed Database De-
sign: Principles and Systems. MacGraw-Hill (New
York NY), 1984.

[8] S. Das, C. Perkins, and E. Royer. Performance com-
parison of two on-demand routing protocols for ad hoc
networks. In INFOCOM 2000, pages 3–12. IEEE.

[9] D. Estrin, R. Govindan, J. Heidemann, and S. Ku-
mar. Next century challenges: Scalable coordination
in sensor networks. In MOBICOM 1999, pages 263–
270. ACM Press.

[10] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, M. Venkatrao, F. Pellow, and H. Pira-
hesh. Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-totals. Data
Mining and Knowledge Discovery, 1(1):29–53, 1997.

[11] Z. Haas. The zone routing protocol (ZRP) for wireless
networks. IETF MANET, Internet Draft, 1997.

[12] D. L. Hall and J. Llinas, editors. Handbook of Multi-
sensor Data Fusion. CRC Press, 2001.

[13] J. Hill and D. Culler. A wireless embedded sensor
architecture for system-level optimization. Submitted
for publication, 2002.

[14] C. Intanagonwiwat, R. Govindan, and D. Estrin. Di-
rected diffusion: A scalable and robust communica-
tion paradigm for sensor networks. In MOBICOM
2000, pages 56–67. ACM Press.

[15] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek,
and M. Degermark. Scenario-based performance anal-
ysis of routing protocols for mobile ad-hoc networks.
In MOBICOM 1999, pages 195–206. ACM Press.

[16] D. B. Johnson and D. A. Maltz. Dynamic source rout-
ing in ad hoc wireless networks. In Mobile Computing.
Kluwer Academic Publishers, 1996.

[17] J. Jubin and J. D. Tornow. The DARPA packet radio
network protocol. Proceedings of the IEEE, 75(1):21–
32, Jan. 1987.

[18] D. Kossmann. The state of the art in distributed query
processing. Computing Surveys, 32, 2000.

[19] S. Madden and M. J. Franklin. Fjording the stream:
An architecture for queries over streaming sensor data.
In ICDE 2002.

[20] S. Madden and J. M. Hellerstein. Distributing queries
over low-power wireless sensor networks. In SIGMOD
2002.

[21] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tag: A tiny aggregation service for ad-hoc
sensor networks. In OSDI 2002.

[22] S. R. Madden, R. Szewczyk, M. J. Franklin, and
D. Culler. Supporting aggregate queries over ad-hoc
sensor networks. In Workshop on Mobile Computing
and Systems Applications (WMCSA), 2002.

[23] M. T. Özsy and P. Valduriez. Principles of Distributed
Database Systems. Prentice Hall, Englewood Cliffs,
1991.

[24] V. D. Park and M. S. Corson. A highly adaptive
distributed routing algorithm for mobile wireless net-
works. In INFOCOM 1997. IEEE.

[25] C. Perkins and P. Bhagwat. Highly dynamic
destination-sequenced distance-vector routing
(DSDV) for mobile computers. In SIGCOMM
1994 , pages 234–244. ACM Press.

[26] C. E. Perkins. Ad hoc on demand dis-
tance vector (aodv) routing. Internet Draft,
http://www.ietf.org/internet-drafts/draft-ietf-manet-
aodv-04.txt, October 1999.

[27] G. J. Pottie and W. J. Kaiser. Embedding the Inter-
net: wireless integrated network sensors. Communi-
cations of the ACM, 43(5):51–51, May 2000.

[28] G. J. Pottie and W. J. Kaiser. Wireless integrated net-
work sensors. Communications of the ACM, 43(5):51–
58, 2000.

[29] V. Raghunathan, C. Schurgers, S. Park, and M. B. Sri-
vastava. Energy-aware wireless microsensor networks.
IEEE Signal Processing Magazine, 19(2):40–50, 2002.

[30] N. Schacham and J. Westcott. Future directions in
packet radio architectures and protocols. Proceedings
of the IEEE, 75(1):83–99, January 1987.

[31] P. Seshadri, M. Livny, and R. Ramakrishnan. Seq: A
model for sequence databases. In ICDE 1995. IEEE
Computer Society.

[32] P. Seshadri, M. Livny, and R. Ramakrishnan. The de-
sign and implementation of a sequence database sys-
tem. In VLDB 1996, pages 99–110. Morgan Kauf-
mann.

[33] A. Shatdal and J. F. Naughton. Adaptive parallel
aggregation algorithms. In SIGMOD 1995, pages 104–
114.

[34] T. Simunic, H. Vikalo, P. Glynn, and G. D. Micheli.
Energy efficient design of portable wireless systems.
In ISLPED 2000, pages 49–54. ACM Press.

[35] S. Singh, M. Woo, and C. S. Raghavendra. Power-
aware routing in mobile ad hoc networks. [3], pages
181–190.

[36] I. C. Society. Wireless LAN medium access control
(mac) and physical layer specification. IEEE Std
802.11, 1999.

[37] M. Stonebraker. Operating system support for
database management. CACM, 24(7):412–418, 1981.

[38] W. P. Yan and P.-Å. Larson. Eager aggregation and
lazy aggregation. In VLDB 1995. Morgan Kaufmann.

[39] C. Yu and W. Meng. Principles of Database Query
Processing for Advanced Applications. Morgan Kauf-
mann, San Francisco, 1998.

[40] C. T. Yu and C. C. Chang. Distributed query process-
ing. ACM Computing Surveys, 16(4):399–433, Dec.
1984.

[41] C. Zaniolo, C. S., C. Faloutsos, R. Snodgrass, V. S.
Subrahmanian, and R. Zicari, editors. Advanced
Database Systems. Morgan Kaufmann, San Francisco,
1997.

77

COUGAR: The Network is the Database

Wal Fu Fung
Cornell University
326 Upson Hall

Ithaca, NY 14853, USA
waifu@cs.cornell.edu

David Sun
Cornell University
326 Upson Hall

Ithaca, NY 14853, USA
davidsun@cs.carnell.edu

Johannes Gehrke
Cornell University
41 05B Upson Hall
Ithaca, NY 14853, USA

johannes@cs.cornell.edu

1. INTRODUCTION

The widespread distribution and availability of small-scale
sensors, actuators, and embedded processors is transforming the
physical world into a computing platform. One such example is a
sensor network consisting of a large number of sensor nodes that
combine physical sensing capabilities such as temperature, light, or
seismic sensors with networking and computation capabilities (1].
Applications range from environmental control, warehouse
inventory, health care to military environments. Existing sensor
networks assume that the sensors are preprogrammed and send data
to a central frontend where the data is aggregated and stored for
offline querying and analysis. This approach has two major draw-
backs. First, the user cannot change the behavior of the system on the
fly. Second, communication in today’s networks is orders of
magnitude more expensive than local computation, thus in-network
processing can vastly reduce resource usage and thus extend the
lifetime of a sensor network.

This demo demonstrates a database approach to unite the
seemingly conflicting requirements of scalability and flexibility in
monitoring the physical world. We demonstrate the COUGAR
System, a new distributed data management infrastructure that scales
with the growth of sensor inter-connectivity and computational
power on the sensors over the next decades. Our system resides
directly on the sensor nodes and creates the abstraction of a single
processing node without centralizing data or computation.

2. THE COUGAR SYSTEM

The COUGAR System is a platform for testing query processing
techniques over ad-hoc sensor networks. COUGAR
has a three-tier architecture: The QueryProxy, a small database
component that runs on sensor nodes to interpret and execute queries,
and a Frontend component, which is a more powerful QueryProxy
that permits connections to the world outside of the sensor network,
and a graphical user interface through which users can pose ad-hoc
and long-running queries on the sensor network. Our system forms
clusters

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
ACM SIGMOD ‘2002 June 4-6, Madison, Wisconsin, USA
Copyright 2002 ACM l-58113-497-5/02/06 ...$5.00.

out of the sensors to allows intelligent in-network aggregation to
conserve energy by reducing the amount of communication
between sensor nodes. The query processing component handles
queries for distributed devices in an intelligent manner.

3. THE DEMO

This demonstration will utilize Sensoria WINSNG 2.0 nodes
[4], running Linux on SH4 CPUs, as well as Berkeley Motes [2].
Each of the Sensoria nodes has GPS, seismic, and acoustic sensors,
while each Mote has light and temperature sensors. The Sensoria
nodes will run the QueryProxy software, while the Motes will be
running a scaled down version of the QueryProxy. The sensor
network will consist of Sensona nodes and Motes communicating
via RF radio using the Directed Diffusion routing protocol [3] with
an XML message format. The GUI will communicate with a
Sensoria node running the front-end over Ethernet.

The demonstration will illustrate the QueryProxy system’s
ability to interact with different sensor types and hardware,
dynamically obtain available sensor types via an in-network
catalog, and aggregate query responses in-network. Users will be
able to create and execute their own queries over the sensor
network.

4. ACKNOWLEDGEMENTS

The COUGAR Project is supported by the Defense Advanced
Research Project Agency, the Cornell Information Assurance
Institute, and by a gift from Intel.

5. REFERENCES
[1] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next

century challenges: Scalable coordination in
sensor networks. pages 263—270.

[2] J. Hill, R. Szewczyk, A. Woo, D. Culler, S. Hollar, and K.
Pister. System architecture directions for networked sensors.
ACM SIGPLAN Notices, 35(11):93-104, Nov. 2000.

[3] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: A scalable and robust
communication paradigm for sensor networks. pages
56—67.

[4] 5. C. www.sensoria.com. Wins ng 2.0 user guide. White paper,
July 2001.

78

goodelle
Text Box
Appendix E:

